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The MITRE Corporation is councerned with the survivability of the
Aly Force Commiand and Control Systems, It conducts studies in this general
area in order to determine the levels at which various systems components fail
and investigates various alleviating measures which may be employed to raise
the levela of survivability,

One phase of this work is concerned with the behavior of deep underground
hard command posts excavated in soil and rock when subjected to nuclear attack,

This document reports on some of the work being done by Paul Weidlinger,

Conoulting Engineer, New York City.

John J, 0'Sullivan
Tue HITRE Cerporation
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GENERAL INTRODUCTIOR

IR B S

This report contains e series oy technical discussions and papers con-

cerned with the theory of wave propsgation in solids with spaciad arplica-

[ v

tion to ground shock phencmena. It 1s a summaxy which provides the theo-
retical bockground to some of our investigations on these topics, initiated
in the early part of 1957, and which are 8%ill actively pursucd at the

prasent,

The report deals with the two major subjects of interest namely, free

fi1eld effects and diffraction phenomena both, in regions wvhere acither

—ps f ] g e

thermodynamic effects nor very large displacements bave significant influ-
ence on the overall physical picture. This restriction eliminates the
crater end its immediate vicinity from the province of our investigations.

This peans that effects outside of the crater region, but causcd by phen.

(ARG oy

cmena within this region are only crudely represgeénted by our analytical

work. Numerical evaluations of these effects should preferably be started
with {rput data obtained from these close-in calculations. These regear.
ches (conducted by Brode at The RAND Corporation) were not concludel dur-
ing the present project, and for this reason the validity of scme of our
conclusicns mst be bracketed within suitable space and time intervels.
Attention must ve gaid to the relation of the mathematical model to
the expected pbysical behavior of the material. Our researches show that
many of the significant quantities due to fundamental consideration are
not very sensitive to variations of physical models. TFor example, the P
wave, generated by a surface burst in sn elastic soldid, appesrs in en
only slightly changed forn and intensity in an elastic fluid, and it is

Uemet  SOTE GO O GuREm A ual  axo

et
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found agnin with omall podifications in a viscoelastic mediun. Similariy
in gramilar solids, the essential attenustion of particle velocities and
otresoce s not to0o sonsitive to quite large variations cf physical parcs
neters.

In the case of Rayleiph waves we were eble to establish the region
beyond which they do not contribute significantly to the free f£icld stresses,
even though the amplitude of these waves obtained by elmstic theory within
“his region i‘ecif is larger than what the pkysical properties of the
material can justify. While these cazrmtations furnish only upper bounds
of the quantities required, their implications are physically meaningful
end of practical significance.

The diffraction problem has 80 far only been considered in the clastic
medium, and it has ied to important conclusions regaerding the amplifice-
tion of free field strasses around underground openings. These some effects
brought out some new results regarding the applicebility of frequency-
amplitude (or shock) spectra: it is found that at high frequencies the
d'iﬁ’mcted spectrun 18 significantly different from that of the free
field spectrunm.

The implications and the applicobility of theoretical findings are
discussed in thi< report and more detail is contelned in socme earlier
studies ([17], (18], and {19]). Ve came vo the conclueion that within
the limitations outlined, the results of our theoretical work can be
epplied with confidence to practical problems dealing with ground sHoek
effects.

The above work was undertaken to provide urgently nceded answers on
problems relsted to the vulnerability of undorground otruoctures: Scmo of
the earlier classified feasibility studies ([18) and {19)),prepared under
pressure of deadlines, wvere iesued containing only mumerical results, or
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educated gueuses, based, however, on rather extensive theoreticsl researches.

The parpose of the present report therefore is to supply in scme
detail the background and data on which our previous recommendations wene
based. It attempts to gather scme of the loose ends and to swmarize
our current inowledge gleancd from our own investigations and from the work
or others. The theoretical results are discussed in the report itself,
vhile some of the detailed deidvations are in the Appendices.

A considerable part of the information which is summarized here is
based on our earlier researches which have been published or arc o' be
published in the near future in technical Jcmzm.ls(*), but recent theore- |
tical results which, at the present are not available in cther form are
contained in Appendices C, D and E. B

Soe of our current investigations which could not be includcd at the
present time, but which will be reported in the near future are as follows:

Statis and quasi-dynamic high pressure exp...mmtal wo'k
on granwar medie;
Wave propagation in visco-elastic medie.

In ¢=ite of the rather extensive coversge of the various topics
vwaich have been considered by us and many other reseerchers, there arc a
great mmber of gaps in our knowledge, vhich have important implications
on the general problem of vulnerability of underground structures, The
most significant which are in need of urgent solution, are as f£3llows:

Failure mechanism and failure criteria of cavities in
elastic nedis.

Ditfraction of stress waves in non-circular openings.

{#) These are denoted by (*} in the 1ist of References.
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Evaluation of the effects of tunnel linings.
’l;hree-dimenuional wave propsgation in granular media.
Diffraction of stress waves in gronular media.
Rayleigh wave attenuation due to non-linear a.nd/or
plastic effects.

Experimental verifications and researcia.

Wnile the above 1ist is far from exhaustive, it is uncomfortably
long; past experience with similar topics leads us to suape.ct that studies
on thegse subjects may bring about surprising and possidvly aggravat:!n’g.
discoveries. While we are working at the present on some of these topics,
we are not £s yet in a position to report significent progress in these

areas.,
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P

Yarssms

mwy_——lp——.‘

MR o g

-T-

FREE-TIELD EFFECTS

1.  INTRODUCTION

The following contains a summary of available theoretical results on
free-fieid effects due to (hypothetical) Megaton explosions on the surface
of semi-infinite media of various idealized properiies.

The ultimate purposes of the prescatation arc conclusions for actual
media like rock or soil with complex properties difficult to analyze or
even to deseribe. The problem of rock-like medic is approached by consider-
inz & succension of materials having gradually more complex properties. In
this manner cartain conclusions drawn for cases of simplc properties can be
extrapolated for more zomplex ones by qualitative reasoning. The writers
believe that estimates applicable in judging realistic situations in rock
have been obtained in this manner by considering the succes.;sion: acoustic
inviscid fluid, linear elastic colid, non-linear elastic colid.

As contribution to the problem of soils additional studies of wave
propagation in locking media have been made. Most of the work concerns
one-dimensional wave propagation, but the cese of spherical waves as now
also been treated.

To have an understanding of the meuning of the analytical results it
is necessary to use a realistic pressure time history in computing examples.
Such e history is indicated in Fig.(1-1), which represents ~~mputed values
of surface pressures for & 20MT curface burst (1]. It is pertinent that
the pressure at any time acts over a cirewlar area of radius £, with constant
intensity except at the peripherv, where a pressure spike appears. It will
be found very importent that the velocity of increass of the rcdius of the
cirele, 1.e. the veloeity of the shock in alr, at early times is very large,
much larger than the seiemic velocities in the ground. The shock velocity




» ’%‘ -8-
[“‘ in air at 19 ms, e.g. 15 still V = 34,000 reet per second, and therefore
4t - larger than the seismic velocities of any likely medium; however, ot 290 ms

the velocity has decreased to V = 7,200 feet per second which is less then
the scismic velocity of some rocks.

For qualitative considerations it is of interest to have information
on the impulse I -\/\p dt of the surface pressure. Fig.(l-a)shovs I at
the center of the explosion &s a function of the time to.

The following recurring symbols are adhered to in the body of the

*
rsport
r, Rand = coordinates as in Fig.(2-1).
e velocity of sound in fluid, velocity of shear
vaves in linear elastic solid.
¢ g velocity of dilatational and Raeyleigh waves, respece
P tively, in linear elastic solid.
G Ny o modulus of rigidity, Lomi'e constants, respectively

»
Different symbols may be uced in the Appendices, as they are taken
from various sources.
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2,  HALF SFACe O w20USTIC IIWISCID FLUID

de ofrect of » prosswre p(r, ¢) on the sur’ucc oi a half space can
*
be obtaincd for the cose of an ucountic( ) fluid from the solution for a
concentrated point load. The lood 18 & unit step load in :ime, of intensity

H(t). The solutions ijor the pressure ean be written in closed form [2]

cos 6 R cos 6 R
P® 3uRe ﬁ(t-z)*' -2—“—&'2—- H(t-g) (2-1)

vhere r, R, z and 6 are defined in Fig.(2-1).

p is the pressure iu the fluid

0 ifx<Q
d(x) = Is o symbol defining a unit step function.

{3 1r>0
g (v) = gi—é-x—l is Dirnc's Delta Pmetion

Using the applied pressur- p(r, t) defined in Fig.(1l)and ¢ = 5000 feet
per second, Mgs.(2-2)to(2-h)give computed pressures for points r = 0, and

r = 2000 feet at various depths.

8) Effects under Ground Zero, r ~ 0,

Figs.(2-2} (2-3)consider points at r ~ 0, directly under the renter of
the explosion. For the ricst 2.2 mo (Fig. 2) the given pressurc. &t
z = 0 and the compuied ones ot 00 feet and 2000 feet depth are undistinguish-
able. For later times, Fiz.{%, aifferences occur, the deviations occurring
earlier at greater depth, It is significant that for a few milliscconds
(except for time delay) the pec nre signal just under ground zero is
independent of th: dcpvh. Taf 18 due to the foet that, the pressure p(r, t)
spreads on th2 surface with -~h g large velocity that one could aseuxe

similtaneous applicacion of & voniform pressure over scpe radius T (Fig. 1-1)

¥ Note that in acoustic theory only first order terms are reteined,
such that the equations becomz linesr. This linearity permits the

use of superposition.
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shows that this pressure is at early times nearly uniform, the spikes
containing only a small portion of the total load).

If a uniform pressure p(t) is applied on the surface of a semi-infinite

fluid, the yroblem becomes one of one-dimensional wave propagution, and in
the acoustic case considered here, the pressure signal propagates then
without chengs. If a uniform pressure 1s applicd only over a circular
arca, a point directly under the load receives a signal equal to the applied
pressure for a limited time, later the pressure drops as 1llustrated in
Fig.(2-W)for r = 0, z = 500. The point vhers the pressure drops is defined
by the trrival time of a signal from the periphery of the loaded circle.
The situntion in Figs.(2)and (3)is similar, but duc to the cxpansion of

the loaded area one connot find an exact time t up to waich one-dimensional
wave propagation applies; instead one can estimate a time £ up to which
one-dimensional wave propagation should be o good approximation. The

time in which the spproximation 1o valid will of course be a function of
the depth, z, (and of the aeismic velocity and weapon size).

This rather elementary explanation vas presecnted in ocuch detail becouse
the above qualitative reasoning is valid not only for the case of a linear
elastic solid, btut also for complicated non-linear and/or non-elastic media,
Even in such cases pressure waves due to the blast pressures on the surface
must be, for a certain time, one-dimensioral in nature, permitiing manage-
eble numerical solutions. These solutions should be good approximtions

for a definable range of vime.

b) Effects in the high-pressure (suvers.lsmie) range when z << »

As a typical exumple Equations (2-1) were used to obtain the pressure
at a typical point r = 2000 feet, z a 500 feet in the range of high pres-
sures, The result is shown in Fig.(e-s)vhere the computed points are compared
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with ths surface pressure at the same radius, r = 2007 feat. It is scen
that the pressures at a depth of 500 feet differ only little from those
on the suriuca.

The small differences between the pressures on the surface and et a
depth z << 1 are due to the fact that the velocity V of the pressure wnve
in air passing over the point i6 very much larger than the selsmic velocity
¢ in the medium. The firast portion of the pressure signal, cay up to 50 ms
after arrival, is due to the sirprcosurc passing over the point, the very
first signal originsting from e point F, 3ec Fig.(5a), As o first approxi-
mation, the actunl pressure on the surfece might be replaced by o plane
preesure wave progressing with constant velecity V> ¢ and without change
in shape of the pressw: ; wave. 1This problem has an elementary solution;

a vave on the surface p = £(t - x/V) produces an inclined plane wave in
the fiuid, p(t - &/c¢), Fig.(2-6). The ongle o depends on the ratio
V/e, and tha pressure signal ?, 0t niny point hoo the same shope oo the
surface pressure, p, = (¢t - ta), vhere ¢ 15 o time delay.

In the high pressure range wiere the velocity of the ghock “ront ia
air V>> ¢, the pressure below the surface in tho fluid can thercfore bo
approximoted by the surfuce pressure. By purely qualitative ITasoning onc
can conclude that this must be so for o very short time after arrival, and
if the depth z is very omall. It is therefore importent to note that
Fig.(2-5)shaws that a reasonablv good approximntion is obtained even at

& depth z = r/lt ond for the entirc time range where the preasures arc

substentiel. It oppears that z = r/l is sufficiently small to satisfy the

eriginal assumption z << r.
¥% 4s interesting to diecuss the difference betweea this approximation

end the ocomputed points. At first orrival the actual pressure must be equal
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‘ Lo Yhe peve adr prercaure at the polrt F (Fig. 5a) on tae surice, w:iieh
prosaure s a 1itide larger than the pealt for 1 » 2000 feet.  {(One could
thorefore inprsive the approxiration for the pealt pressare by unine the
preusure hintory at F.) Subsequently, for o lirmited time, the somputed
srasgures dun to tho loads accordine to Tig. (1-1) are lover than the purface
pcosura, sinilar to the situation for r = 0 ain Flg.(2-3). lMowever, ot
luter tioaa, ¢ > 150 3, thc computed pressoures exceed the approximate

ones somswiat. Thils 15 caused by the hign applicd pressures within the

ceutrid edrcle r ~ 1000 fect, shortly after the enplosion. Waves generated

frem this high pressure area arrive at this time; the offect ot the point
considered is however only amall, becouse these prescu=es are rermote and
act only ove: & relatively smell area. A computation coalirming that

the effect of the early high pressure in a typleal case is not significant

was hovsver required, because the relative mymitude o the effects compared

depends on the rapidity of the decay of the applied air pressurc. For o
very much larger, or very ruch smaller weapon, the sitnstion might be different.

The eimplilying approximation of assuming thit the shape of the scur-

face pressure does not cnange, and vhuel tuls poessure progresese vith cond
stont velocity, V, has been tested above at & point where the ghock veloesi,

Y is several times larger than the seismic veloclty c. The same assumptlon,
we will call it the "steady otate solution”, can Le made with good results

if the velocity V is appreciably smaller than ¢, but the prussure in the

fluid vill not have the character of Fig.(a-é). A theoretical tolution for
this case can be derived from {3}, Withoul pursuinz the matter further, it
should be stressed that the approximation must necessarily become poor i0

Y end ¢ differ livtle, regardless whether V> c or V< ¢. In the superseismic
case coutica {8 therefore indilecated unlecs ¥V 2 1.5¢. Further numericel work

to £ind how close t¢ V = ¢ the approximation may be used is planned.
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Returning to the superseismic range; it 16 important thac the enalysis
for the fluid, based on the approximation, indicatecs no attenuation of ths
pressure with depth. (This conclusion can of course only apply for the
range z<<r for which the approximtion can be valid.) If the approximation
vere not used smll differcnces with depth world be found, but there would
bte no appreciable attenuation, until the depth 2 becazes comparcble to the
vadfal distance r. (In the subseismic range, on the other hand, an analysis

using the some approximtion indicates gubstantial attenuation. )

m,_ situation for the fiuid, which in itself is not perilnent, has been
discussed at length becouse equivalent spproximations can be made for the
ehlc.:c soldid or other medin. Mathematically speaking thc~6tem1y state gol-
uticn in the superseisnmic range 1s an asymptotic approximation, for short
time after arrival; becauce the air pressure signal used is the one for a
point on the surface at the distance r fronm ground zero (not for point F,
Fig. 5a, vhere the first signal originates) the approximation as proposed
here is also restricted to sufficiently small depth z, such that the pres-

¥
sures at the two points do not differ noi;icea.biy.( )

(*) It would be an unwarranted refinement to use the pressura at point F
a8 basis, because the locavion of this point would require & cumbersome
computation for each depth z. Yet, if the ectual air pressure varies so
rapidly that the prescure at F differs appreciably from the pressure
exactly above the point considered, the signal would be affected by these
variations within a short time after first arrival. In such & case the
steady state approximation would be poor and useless anyway.
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3. HALF SPACE OF LINFAR-ELASTIC SOLID.

The effect of an applied surface pressure according to Fig.(l-l) can
be obtalned again by suporposition frem the effect of a concentrated
atep load. However, the effect of the latter 15 much more complicated
than in the case of en accustic fluid,

a) Effect of a concentrated step load.

The literature {41, (5] conteins formal solutions for the displacements
of the surfnee due %o bwried horizontal and vertical step loads. By virtue
of a dynamic reciprocal theorem (6], (7] it 1is coneluded that the vertical
and horizontel components of the displacements due to o step load on the
; surface, are, respectively, equal to the vertical displacemente of the sur-
face due to vertical and horizontal step loads acting below the surface,

, agee Fig. (3-1)- The above~-named papers furnish formsl expressions Lor the
displacements for the present problem; expressions for the strains and

L stresses can be obtained by routine manipulations. However, the expressions

. ore not in closed {orm, they require the very cumbersome mmericol evalua-

i tlon of definite integrals. A series of displacement histories w 3 aomputed

) and graphically presented in (4]. While extremely helpfal for purposes of

the general discussion which follows, these graphs could not be utilized

for the mumerical determination of stresses or displacements due to the

gurface pressure, Fig. (l-l) + Numericel results reported below bad to be

. developed from the available thcuretical expressions.

M General information on wave propagation phenomena iu elastic solids

can be found ip standard texts, defining P-waves of dilatation (velocity cp)

and S-waves of distorticn (veloeity e< cp). In addition the existence of

surface waves, called Rayleigh waves (velocity cR<c) , %8 established.

— Knowledge of thase wove types permits a purely qualitative descriptlion of

. the state of stress in a ialf spuce due to & concentrated otep losd, Fig.(3-2).
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At a given time t after application of the load, the discontinuities
agsoclated with the froats of the P and S waves will have reached the
surface of spheres of diameters tcP and te, respectively. Further: the
region between the S and P fronts is divided by a conical surface SP,
locating the Van Schmidt front. The Rayleigh waves will be of importence
on the surface at or near R, somewhat behind the S-front.

Considering & point », z, Fig.(3-g), the wave frontes will progress
with time; tue P and S fronts will pass through any point, while the SP
front will only pass through points for which the ratio z/r is less than &
eritical valuc which is a function of the ratio °s/°p' Rayleigh waves
will be only notjceable near the surface, i.e. if z/r is very small, This
qualitative description is borne out by Fig.(3-3) giving the vertical
deflection ¥ = w; according to Reference (k) for three ratios z/r.

For r/z = 0.5 only the P and S waves pass the point; for r/z = § the SP
front appears, and there is a faint trace of the Rayleigh wave; for r/z = 40
the Rayleigh wave is fully developed and is a major effect.

It vill be noticed that the response curves in Fig.(3-3)at the P and §
fronts show necwliarities, i.e. discontinuities or infinite values. These
are due to the singularity in the mathematical fiction of the assumed
"concentrated polnt load." If the effect of a physically possible dis-
tributed load 1s computed by integration over the response from the con-
centrated point load, it is found that undue peculiarities disappear.

Response curves for other displacements or stresses will obviously
be of a similar complicated nature, having various ranges as functions of
r/z and of the nondimensional time ¢ = ct/R. To find the response due
to the pressure defined in Fig.(l-l)by a purely numerical integration process,
covering the entire response reange in r/z end 5 , would beccome extremely

_ involved and time consuming even using modern computer equipment. For this
reason sn attempt will be made to recognize the important effects in _euch
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location of interest and to find suituble approximations, similar to, or

more general than those developaed in Section(2) for the liquid half space.

b) Effects under ground zero, r~ 0

Consider o point A at r ~ O at some depth z >> », Fag.(3-4) at o
time ¢ quite soon efter arrivel of the first signal from a surface pres-
sure p(r, t) of the Lype shown in Fig. (1-1). At this time only the surface
pressure acting within a circle of radius p , (sec Fig., 3-4) con con-
tribute to th2 rceponse of point A. The integration over thc effects of
& concentrated load on the surface will then involve only curves vhich
have the nature of the curve for r/z = 0.5 in Fig. (3-3). To define the
response in this range (r/z< 1/Y2 ) the jumps st the P and S fronts
were obtained (in closed form) from the theory. The result for the ver-
tical displacement v is shown in Fig. (3-5). The portion of the curves
between the P and 8§ fronts, and the portion following the S froat are
grophically given in (4], They are so close to straight linec that they
were approxinmated by straigbt lines to obtain a éingle ideallized response.
(The level of the horizonted line for 7 > 1 is defined by the & tie deflec-
tion, known from Boussinesq's solution.)

Using this approach the vertical veloeity ¥ of a point at z = 1000 feet
was computed for severnl values of t. The results are shown in Fig.(3-6)
and compared with the vertical velocity ﬁo on the surfece. It 1s secen that
in the time range plotteu the <locity histories on the surface and at the
depth of 1000 feet cennot bo distinguished. The situation corresponds to
the one showm in Fig.(Q-EQfor the fluid; and we draw again the conclusion

that in this location, r o O, the assumgtion of one-dimensionsl smve propa-

gation will give a good approximation for the important, early, high-pressure

part of the signel.

For a linear-eiestic material onc-dimensional wave propagation implies
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no attenuation of pressure with depth; this conclusion, however, must not
be applied to sctual muterials which will behave non-lincar at high pres-
surc levels near ground zero. The non-linear case is discussed later,

Section(5)

e) Effects in the high-pressure (superscismic) rangc at moderate

depth, z << =
In the corresponding case of the fluid, treated in 2 (b), it wos

found that the response for a considerable length of time {several hundred
m3) could be approximately determined from o stoady stote solution. Thio
golution was the responsec due to an epplied plan¢ pressure p = £{t - x/V),
vherd £(t) is the pressure history on the surface above the point consid-
ered, and V is the velocity of the shock in air ot this point,

Using the same general reasoning es in the cese of the fluid, one
comes again to the conclusion that at moderate depth, 2z << r, the early por-
tion of the responge in the olastic solid can be obtained with good approxi-
mation by computing the response to the simplitfied stecady pressure pulse
p = 2(t - ¥/¥). The solution Tor this problem is availnble [8] and enclosed
as Appendix A(*). However, it must not be concluded without f.‘urther inves-
tigation that this approximation will be sufficicnt for a considerable time,
as in the previous exauple for the fluid, Vhen discussing the latter case,
Fig.(2-5) it was pointed out that the computed pressures for ¢ > 200 ms
were larger than the approximate values, which was aseribed to effects
originating in the region of very high pressures near r = O shortly after

the explosion.

(%) There i3 a printing error in (8] for the superseismic case, which
is corrected in the Appendix.
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To hava o bagis for Judging the accuracy of the response of the
elagtic s0lid ot later times, it 18 necesasary to consider effects originant.
ing in the region of high pressure. This could be done by a complete
nurerical determination of the response to & step load from (4] and (5]

ond subsequant integration for the preoeribed load p(r, t). fThe very ex-

tensive nunerical work required is however not required. By qualitative
consideration of the energy available, one can reagson tha% the effects of
the P and § wvaves from the reglion of high prossures will be of the same
order of mognitude as the pressure wave effects in case of the fluigd,

and as far as the effects of P and S waves go the steady state approxima-
tion in the solid should be as good, or as poor, as in the fluid. This
reasoning does not include, however, the energy trancmitted by surface
waves. It is obvious that the energy of surface waves passing through a
point at some distance r will be a function of 1/r, while the energy in P
and S waves decreases es l/ra. Rayleigh wave effects decay thercfore

slower than the other effects and cannot be judged on the basis of an
exemple for the fluld. Stresses or displacements caused by Rayleiph waves
originating in the high pressure region must therefore be computed, and iT
cubstentinl they must be added to the "steady state solutions.” As Rayleigh
wave effects decrease rapidly with depth, their relative importance compared
witﬁ. the effects described by the steady state solution will depend on the -
depths of the point considered. For sufficiently deep points the Rayleigh
effects will become negligible, but the d.epthu where this occurs are not
known beforchand. It was therefore neccessary to develop an analytical pro-
cc;dure for the determination of Rayleich (curface wvave) effects,

Tais suggests that the response in this range moy be obtained approxi-
mateiy, by us;ing the "steady cinte solutic;n" and adding, if nccannary,/ the
Rayle’igh wave effects, It is now appropriate to consider the steady state
solution and ite limitatlons.
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Discussion of Stcady-State Solution

if a pressure wave p(t - x/V) travels with constant superseismic
veloedty V2 ¢, > ¢ on the curface of o (1inear) elastic volid, it pro-
duces an inclined plane P-wave and an inelined plane S-wave in the soligd,
a5 shovn in Fig.(S—?). The intensity of these pressure and shear waves is
proportional to p(t), the factors and angles of inclination depend on the
ratio V/cP and on Poisson's ratio, scc Appendix A, Fig.(3-7)shows two
cases V/cp 2 1,5 and 3, both indicating that the P wave has nearly the
same intensity as the applied surface pressure while the § wave 15 less
important. The thecoreticol solution has the character of Fic.(3-7)uc long
as V > Cpe However, as tihe velocity V approaches p the strengths of the
vavee vary rapidly as function of V/cp, as seen from the following table (*)
(for Poisson's ratio 1/4),

P-Wave S-Have
v
p o/p +/p
3.0 0.99 0.22
1.5 0.96 0.45
1.4 0.96 0.49
1.3 0.97 0.52
1.2 0.99 0.56
1.1 1.05 0.59
1.05 1.19 0.58
1.0 1.71 0.46
1.001 2.0 0.21
1l 3 0

{#) The situstion is also presented graphically in the Appendix, Fig. A-2.
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The sensitivity of tha solution for ratios v/cP < 1.1 indicates
clearly that the steady-stete solution for such ratios cannot be used as
approximation. One can easily give an alternative reason why the steady-
state solution becomes poor and invalid as V/c:P -« 1. Vhen this xotio
approaches unity the inclination of the P front goes toward a - 90°;
if one considers the target point A in Fig.(3-8),the first signal will
originate from & point F vhose horizontal distance (because of « ~ 90°)
is quite large compared to the depth. Bigrals from other intermediate
points, say F', will arrive a very short time later. OCbviously, if the
horizontal distance AF is large, the pressures at F and at intermediate
points F* vill differ radically, and & stendy-state approximstion becomes
invalid except for very small velues of z, and for a very short time afier
arrival of the first signal.,

One can use the above consideration to judge the applicobility in cases

of small ratios, V/cP < 1.5, by comparing pressure and velocity aebove the
point considerud with these at point ¥, In the case V/cP = 1.5 shown in
F1g. (3-7, toe angle of the P.vave 18 o = 41°50'; constdering a target A
at a depth z » 500 feet, the horizontal component of the distance is

AP w 2 gin @ = 333 feet. Variations of pressure end velocity V in such a
distance are such that the resuld for this porticular depth may still be
considered a crude approximation.

Whenever the steady-state solution becomes unsatisfactory the early
rart of the signal could be determined by using idealized curves for the
response due to a concentrated load, similar to the one shown in Fig. (3-5).
Further work in this direction appears desirable because the range vhere

e stendy stete approximation is unsuitable is still of practical interest.
However, even Dy using idealized responce curves the nvmerical integrations

requived are likely to be cumbersgue.

v e o arar, it B o et s s
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Deternination of Reyleipgh Wave Effecto.

The analysis contained in (U4} and [5] was carried further, {9], and
expressions for strcosen ond digplaccments :luo to the surface waves gen-
erated by a concentratcd load are given in Appendix B. The expressions
are in closcd form, and reprecsent the najor portion of the totsl responss
for large ratios r/z and in the vicinity of 7 = -;5- - cR/c. E.g+, the

exprss5idne found will give a vory good approximation of the portion near

0.9 of the curve for r/x = 40 in Fig. (3-3).

]
4

As exampla the streos o,, due to surface weves is given in Fig. (3-9).
It is sean that effects occur only during a short period of time, of the
order two to three times z/c, where z is the depth of the point considered.

To obtain the Rayleigh effects from the surfnce forces due to the pres-
sure history in Fig. (1-1), & formal double integral is derived in Appendix B.
Its evaluation for typicel lovations required the use of an IuM 704, The
analysis {ndicates that the stresscs 0. ore larger than the other stresses,
%99 ? 9gg 7 Ipy such that the importance of Rayleigh effects generally may
bs Judged by ccnsidering 9.0+ Flgs. (3-10) and (3-11) show the computed
time history of the stresses L at a number of depths in two locations,
g, (3-10) presents the stresses at r « 2000 ft. for o medium having
v = 1/4, ¢ » 10,000 ft/onc (cP ~ 17,000 ft/gec). Fig.(3-11) gives similar
results for r » 3200 ft. for a wmediws with v = 1/, but having ¢ = 6000 ft/sac.
(cP ~ 10,000 ft/sec). The decrcase of Royleigh stresses with depth 1s quite
evident,

Comparisons of stresses due to Rayleigh effects and duc to the effects
of P- and 8-waves are shown in Figs. (3-12) and (3-13). The former shows
9. and Opr for r = 2000 ft. at a depth of 100 ft. for the same mediunm for which

2
rig. (3-10}) epplies. In this location the velocity V of the shock in air is

larger than Cp x 17,000 ft/oec., and the "steady state solution,” Appendix A,
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could be used to compute the pressure waves arriving chead of the surfece
wvaves. Tho time t used in the grapho 16 counted with recpect to the in-
stant of the explosion at r = 0. The two spikes in o,, represent the
arrival of the P- and 5-waves, respectively, Similar spikes occur in Orrs
except that the one duc to the S-wave is not in “he same dircction as the
one duc to the P-wave, such thot the stresses o r remain high only for o
short time. Fig.(3-12) chows that in this location the peak values of the
signal fram P- and S-waves arc larger than Fayleigh stresses, but the dura-
tion of high Rayleigh otresses in °rr is lenger. Depending on the response
time of the target Royleigh stresces may or may not be ignorable. At greator
depth of course the effects of the P. and S-waves do not change roterially,
while Rayleigh effects decrease rapidly, such that the latter will becoxe
immterial.

Fig. (3-13)shows a similar comparison for r = 3200 ft, at 100-ft. depth
for the medium used in connection with Fig. (3-11.

Additional numerical results are presented in Appendix B. Attention is
drawn to the fact that the formulae developed in Appendix B canno. be applied
for points on the surface, z = 0, because negative powe - of z occur. As &
consequence computational difficultiec would arise for very small depth,
and only results for points ot a depth of 25 feet or more were obtained.

The trend of these recults as a functiocn of the depth is such that
rather large stresses orr and Ogg can be expected near the surfacc.(*)
The existence of such high stresses in the elastic analysis make it in-
appliceble to actual situations near the surface z + O such that the addi-
tional effort regquired to derive an appropriate onalysis for shallow depth

wes not expended.

{*) The vertical stress o,
foce must vanish.

z and the shear stress °rz or the free sure
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The ocecurrence of high Rayleigh strecses near the surface in dtself io
o linmitation to the applicability of the lincar elsstic theory to actual
solutions. Referring ags exomple to the situation in Fig. (3-13), at & dis-
%tanco of r = 2000 ft., the air pressures acting at the surface are such
that the use of linear clastic theory is reasoncble because the stresses
obtained frum the cteady-otate golutions ore suffsciently low. Tne strecses
due to Rayleigh waves (which occur at o later time) at this horizontal
distance at the depth z~100 ft. will also be small enough to be in the
clpstic range, but, as the same can not be said near the ourface, the
Rayleigh stresses everywherc can not be considercd rolieble; the values
cazputed by the theory are presumably much too large. Caabining this con-
sideration with the cffect of the crater, discussed in Section Gb., the
Rayleigh stresses in Figs.(3-10)to (3-13 should be considercd as upper bounds
oaly.

d) Effects cutside the superseismic range, at depth z << r.

It 15 noted that even outside the superseisnmic range the effects at
shallov c‘.ehpth 2 <<r can be divided into a signal duc to the air pressure
passing over the target point, end a Raoyleipgh signal, The latter can be
determined by the method previously outlined, which does not depend on a
particuler location of the target point. Appendix B contains also results
for subsoismic loecations.

To obtain the effect of the air pressure passing over the torget point
one can try to use the steady state approximation. The solution to the
steady state problem is availablc {8) but it 15 comewhat more complex then
in the superscismic r:'mge.(*) There are actually two ranges, depending on
whether V> ¢ or V< ¢. Further, o steady state sclution will again be

useless if the velocity io close to cpe Another trouble spot has been

1#Y Potentially useful expressions for the steady.state solutions due
to oxponentially decoying pressures are contained in [36]. ‘ley
might be utilized to tabulste the solutions.
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pointed out by Miles [10]. The steady-state solution inddentes infinite
atressos, and bocomes inapplicable il V = °p? vhoro °R is tho Rayleigh

wave specd, A formulation for a surface pressure with varying speed vac
obtained in Raference [10] to overcome this difficulty. No numerical
reoults ave available at present. Tho coxbination of the stoady state
soludlon and of the Rayleigh wave contributions gives therefore only o par-
tial answer in this rénse.(*) It should be stresced that the steady-state
solutions outside the superseiomic ronge indicat attenuation of the response
with depth; this would indicate--at leact in the theoretical elastic medium--
that the surface vave effects outside the superseicmic range may remain

significant at larger depta Liuan ‘.3 superscicmic range.

(*) 1o com;mtationa to check the accuracy of the steady-state approxima-
vione (8imilar 0 Fig. 2-5) appear to have been mede by eayone.
Such a check may be desirable because qualitative considerntions
1lead to the suspicion that this approximation outside the superseis-

mic range might be poor.




APPLICATION OF DYNAMIC REC!PROCAL THEOREM
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L, LAYFRED MEDIA

In npitc of the fact that loyering, or gradusl chonges of the mediun
with dopth will have pronounced effeets, only a few applicable solutions
are gvailx}ble. This 4o due to the complexity of the problems of laycced
media. The steady state cose of a pressure pulce progressing with constent
speed V on the surface of a fluid laysr ebove a fluid half space, Fig. (k1)
has been censidered (3] without restriction as to the value of the velocity V.

The equivalent problenm for a layered clastic soldid has been solved [11]
in an clementary manner, but only in the superseismic range, i.e. vhen V is
larger than the sound velocitios in eSther medium. Fig.(k-2)shows ctresses

0., due to o otep vave of constant pressure, when the velocities of cp(a)

and. e(2) in the lower mediun are twice those in the upper one. It ioc seen
that the vertical stresses o 2z both at points in the upper and at points
in the lover medium are increcased by the reflections from the interface. If
the applied pressure on the surface has a decaying history, & case vhich is
treated in (11], the reflections may be leas important, because they are
added t0o 8 reduced stress frcm the Girect sigral. Hewsver, it must be
emphasized that layering always increases the vertical stresges if the
velocity of sound increases with depth, Reduction of pressure, indicating
a protection, occurs only in the unusual case vhen the sound velocity de-
creases with depth. The reverse applies for vertical displacements and
accelerations; thsy decrcase duc to liayoring if the sound velocity increaces
vith depth. The approach used in Reference [11] can be extended to any
number of layers, as long as the velocity V is larger than the sound veloci.
tieo in any layer,

A problen involving & leyer of £luid over an elastic holfespace has
been treated theoretically and experimentally in Reference {12], vhere the
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response fron & point explosion in the layor has beon obtained, Fig. (I=3).
The cumphasis in this paper wad oa waves propogoated on tho intorfece. It
is expsripsntsally possidble to measure pressurcs in & fluid relisdbly, and
good sgrecasnt betveen theory and experiment wus obtained,
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5.  ONE-DIMENSIONAL WAVE PROPAGATION IN A NON-LINEAR ELASTIC MEDIUM.

In Sections(2) and (3)1t could be demonstrated that for the cases of
linear behavior of fluids and elastic solids the assumption of one-dimensional
wvave propagation gives good results for the early part of the response of
points belov ground zero, r ~ 0. This conclusion can be drawn qualitatively
for any other medium if the velocity of wave propagation is much smaller
than the velocity of the blast wave on the surface.

The early pressures near r ~ O in actual situations are eo high that
non~linear effects must occur in any conceivable medium. It is therefore
very important that the effect of pressure distributions of the type given
in Fig. (1-1) can be determined as a problem in one-dimensional wave propaga-
tion, bocause such a problem--even if non-linear--can ve handled by numerical
methods. As a4 matter of fact some useful general conclusions can ve drawn
for a general class of non~linear elastic cases.

Consider @ rod-like element of the half-spacs, Fig. (5-1). The "rod"
has unit cross-gectional .rea and extends from the surface 2 « 0 to 2 = .

In the present situation the horizontal strains must vanish such tiat the
area of the rod does not change, Let Fig. (5-2) be the eppropriate strese-
strein diagrem of vertical stress o versus vertical strain ¢. For suffi-
ciently small stress, say o < 7 the law may be assumed o be linear.

Let a decaying pressure pulse p(t) = ¢ (D, t) be applied t0 the rod, such
that the peak of p(t) is larger tan Oy

The response for the case described akove could be computed numerically
for any given stress-strain diagram. How:ver, an equivalent problem has
been considered in [34], Bec. II for & bi~-linear (plesticeelastic) medium.
The medium has the stress-strain diegrem, shown in Fig. (5-3), which is o

special case of the one indicated in Fig. (5-2), Fig.(5-4) showo the strens




-70=

response for aa exanple, which can be considered tvpical. The exomple
vas computed for an input pressure at © = O which had a peak of 18,000
pei, vwhile at points velow the surface, ¢ = 500 feet and z = 700 feet,
much smaller peak stresses were found. On the other hand, stresses at
t = 100 ms o1 more after arrival at the lower levels were larger than
the corresponling input stresses. (The reduction of peak stresses must
be compensate. by somz increcse of stresses at later time to satiafy the
law of conservation of momentum.)

From the above example one concludes that in the none-linear case a
reduction in peak pressure with depth {attenuation) is to be expected.
This attenuation will however only continue until the peak pressure has
dropped to the value o defining linear behavior in the stress-strain
diagram Mg. (5-2).

As long =5 the applied load 1s such that the assumption of ore-
dimensional wave propagation is reasonable one must éxpect peak pressures
of the magnitude of the stress 9, defining linear behavior. Some idea
of the level of oy, can be gained from the simple tests on granites described
in Appendix F. It is seen that the stresa-strain relstions are fairly
linear, up to fracture on the 15,000 to 20,000 lb. level. 1In the case of
plane wave propagation where transverse strains and therefore fractures
similar to tha tests are iphibited, it is to be expected that & nearly

linesr relation will hold up to even higher stresses, 0, > 20,000 lb/in.a
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6. USE OF THEORETICAL RESULTS FOR PREDICTIONS IN ROCK.

When coaparing the complexity of an actual cituation with the relative
simplicity of the problems analysed, it should be clear that theoretical
solutions can not give a complete picture of stresses everywhere, but canee
at best--psrmit a rough estimate of the stress fleld in certain locations
at certain times. In viev of the scarcity of expsrimentul information,
the theoretical solutions must be exploited by searching through qualitative
reagoning for situations where they rpply.

Before discussing specific locations, it is convenient to list major
offects not appearing at present in the theoretical solutions. Concerning
the effect of the explosion, only the air pressure on the surface has been
considered, ignoring not only heat and radiation effects, but also cffects
due to the direct impact of the casing at the point of explosion. Concern-
ing behavior of the material, high pressure levels requiring an equation of
state are not w!thin the range of this study, which eliminates the crater
rogion from further consideration. On the stross level considercd here,
materials might not behave elastically but in & viscous or plastic msnner,
or exhibit other dissipative mechanisms. The fact that only small strains
are considered should also be mentioned but is, on this stress level, not

likely to be serious, as the strain will not exceed a few per cent.

a) Target locations below the crater,

Consider a target below the crater; it may be at twice the depth of the
crater, Fig. (6-1)., Without knowing the presaure history exactly, we know
that very high pressures are propagated downward over an area exceeding the
diameter of the crater.

While the formation of a crater is eviderce that the situation is not

raally a "plane wave" situation, the fact that the crater is a flat bowl
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dissipative effects are not likely to be very important (which does not
mean that solutions including such effects should rot be sought). Esti.-
mates of the first signal based on steady state solutions, particulsrly in
the superseismic range, should therefore be of real significance. The
pronounced dirference according to theory between superseismic and sub-
seismic ranges, the former having no or negligible attenuation of peak
pressure with depth, vwhile the latter has pronounced attenuation, can be
axpected to be n real fact.

The situation concerning the second signal is much more uncertain,
because 1t 18 due to forces acting in tie crater region where the elastic
theory can not possibly apply. The elastic theory predicts Rayleigh (surface)
wvaves a8 the major sifnal to be received; now, the exlstence of such waves
requires an interaction between direct and shear stresses, such thnt they
do not occur in a8 fluid. At high pressures in the crater region the
material is acting like a fluid, and one is led to conclude that the incep-
tion of surfuce waves will be inhibited, and that the elastic theory will
groesly cxaggerate surface waves. Tor this reason the Raylelgh stresses
computed in Appendix B rmst be considered too high, presumably very much
too high(*)

Theré is & second recson why the Rayleiph stresses in actuality must
e less than founa from ine eiastic theory. 1Ir thé stresses found were
otherwise correct, those necar the surfoce are larger than rocks are likely
to withstand. It would not mattcr if such high stresses were nearly hydro-

static, but the atate of stress in surface waves is inherently deviatory

(#) When arguing that the actual stresses due to surface vaves are smller
thon given by elastic theory, one should not be misled into the con-
clusion that they can always and everyvwhere be ignored. It should be
remembered that at very large distances sevismological experiénce proves
beyond doubt that Rayleigh wvaves are the dominant effect. There must
therefore be a transition renge beyond vhich surface vaves ecan not be

ignored.
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(1.e. having considerable shear dcfonmt.ion). The region near the our-
face ought therefore to be analyzed as an elastic-plastic medium which
wvould lead to lower stresaea.(*)

Pending further study the Rayleigh stresses obtained in Appendix B
can be considored only as an upper bound. Such a bound 1o useful beeauss
whenever comparison of the firet part of the reoponse indicat ‘at it
exceeds the Rayleigh stresses in importance, the latter can be safely
ignored. E.g., in the superseismic range this permits determination of o
depth belcw which Rayleigh stresces are cortain to be small compared to

the early reocponss.

(*) Any other dissipative effect would also lead to lower otresses due to
surface waves. Such waves in o visco-elastic madium have recently
been considered {15).
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T. V¥AVE PROPAGATION IN CRANULAR MEDIA.

The behavior of certain solide under very high intensity, confined
or hydrostatic pressure is characterized by a non-linear stress-strain
relstion of positive curvature which, upon unloading, shows large perman-
cat strains. This responoe 18 manifested at dirferent pressure levels in
various materials: at low pressures in foam-rubber, in the 100 to 16,000
psi range in granular soils and presumsbly at much higher pressures in
porous or solid rocks.

A typicel stress-strain diagram of this type is shown on Figure (7 1);
this diagram can be idealized by various linear diegrams shown in Figures
(7-2), (7-3) ana (7-4).

Figures (7 2) (a),(b) and (c) show u class of materials known &3 loci-
ing medie (a), or materials of limited campressibility, (b) end (c).
These materlals have the property of becoming essentially incomprassible
or rigid upon compression when a eritical strein €, 1s reacned. At that
instant a sudden locking or compactien of the medium occurs, and upon
unloading the permanent strain ¢ e remains.

If a certain amount of residual elasticity exists after compection
or locking, the material can be represented by the bi-linear diagram shown
on Figure (7-3). If the irreversible compoction proceeds gradually, the
stress-strain relation is that of “igure (7-4). This materisl acts elasti-
cally on loading and unloads with a permanent set es shown in the figure.

Rather extensive literature is available oa the static behavior of
locikting media, [24] and [25) and plane wave propagetion in both locking
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nedin, {Figure 7-2 (a), (b) and (c)], and in the type of materinl shown on
Flgure (7-4) which has also been investignted ({26) and {27]). Ilore recently,
problems of wave propagation in bi-lincar materials of the type shovn in
Figure {7-3) have been solved. Spherical vaves in locking medis are ex-
plored in References {29], {30] and (31].

Most of these investigetions find application in researches coanected
with the prediction of ground shock effects due to thermonuclear blasts )
{32) and (33] ,OF are concerned with the detection of underground ruclear
tests, (30) and (31]. An application to the design of invulnerable, deep
underground shelters 1s considered in References (18] and (19], and a
general discussion of these topics is found in Reference [34]).

Some of the relevant results, such as shock.velocity and the attenua-
tion of peak pressure intensities with depth may be summarized as follows:

It the surface of a semf-infinite locking medium of the type shown
in Fgure (7-2a) 18 subjected to a decaying pressure p(t) the shock
velocity z of the front localed st a depth z 18 given in [26] and (27) vy:

= :iapccji(i-.) t}’l/a (7-1)
where p is the density of the medium, and I, the impulse of the applied

pressure, is

I = [op(t)ae (7-2)
The awplitude of the pesk stress o, is related to the depth z by
2
0. = X 2 (7-3)

z pe,
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For a mediun which ochows a gradually irrversidble compaction (Figure T-h),

the above quotcd-reference gives the propogation velocity as:

¢, = (E/p)']'/2 = constant (7-¥)

vhere E 48 the elastic modulus of the nedium. Tho attenuation of the penk

stress vith depth follows the lav:

oz - Icoz.l (7'5)

e e e D~ R VR - |

Nunmerical evaluation of the stresses and particle velocities in a locking

Gams nath

mediun, (Figure 7-2a), subjected to high intensity blast pressures dic-
cloces the following significant rooults (18].
(a) Thc intensity of penk stressos (and of the particle velocitics)
in lockirg medin attcnuates very rapidly with depth. (See Mgure 7-5).
(v) Tne attenuation of these quantities it to & surprising degree
.- ine~~sitive to variations of the parameters of the medium. For example,
at a high yield surface burst near ground zero, the intensity of stresses
beyond a depth of 500 feet differs orly sligh:cly for materials which have
* a wide range of critical strains (e‘= » 0.02 to 0.10 as shown on Figure 7-5).
(c¢) The existence of residual elasticity has an equally slight
. influence: A locking mediwm with & eritical strein of ¢ = 0.02 ie compared
: with a bi.lincar medium of identical critical strain but with a residual
elastic modulus of E = 106 psi in Figure (7-6) and we note that the attenua-
tion of peak stresses beyond about SO0 feet of depth is not significantly
affected. These phenomena have been found to exist for a rather wide range
of variations for voth parameters (e o and E) and are the subject of detailed
invaestigations in Reference [28].

These concluaione are of interest because they show timt the essential
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and significent attenuation of blast pressures can be anticipated in a
large variety of dry granular soils. Consequently, the free field para-
zevers should Ve predictable if a limited amount of informatiocn is avail-
able regarding subsurface conditions.

Ae mentioned previously the theory of aspherical wave phenomena in
locking media bhas been applied to study the effects of underground explo-
stons. In [29) the effect of an exploding point mass is considered with
a viev towards exploring the effect of the so-called "direct ground-shock",
(i.e. the axpicding casing of the weapon) in a granuler soil,

It 42 found that the spherical shock at a radius R propegates with
the velocity:

R = R+ (;-E)31'“ (7-6)

vhere the kinetic energy of the mass M of the casing ia:
1,22
PR

and the quantities:

3 M

v - 5 (7-7)
o hxp(e? - e;d)ez
and \
N ol eg (7-8)
LRRTEY)

are constant characteristics of the medium and of the casing.

It is expected that this work will also shed some light on the problem
of a surface burat, as an early time approximation of the direct gryund
shock effect.




i

-85~

o
/ £
FI1G.7-I
o o
| *
\ I
i i
ec € 80 ec
(a) (b) te)
FIG.7-2
€
|
i
7 {
/) I
€c € €
FI16.7-3 FIG. 74




-87-

300000
600000
~
g
~ 400000
N
b Ec = 0.0 2
Ec =C1C
200000
0 200 400 600 800 1000
z (FeET)

FIG.7-5




e ——

Oz (PSI1)

STRESS

40,000
\/—o;s (BT~ LINEAR)
/\—~—055(L00K|NG MEDIUM)
30,000
\ COMPARISON OF BI-LINEAR
AND LOCKING MEDIA
\\ F16.7-6
20,000 \ 2
10,000 \\\\
\\\
~.
° 00 400 600 800 1000 1200

DEPTH Z (FEET)




-91-

II

PART

DISFRACTION EFFECTS
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DIFFRACT:ON EFFECTS

8.  INTRODUCTION

Thermonuclear explosions on the surface of an clastic half-space pro-
duce a couplex stress pattern in the medium. In the most general case,
the circularly-symmetric surface pressures from the explosion, which expand
radially outward from Ground Zero in space and decay in time, produce a
streocs pattern at points in the medium in which the two principal stresses
change in magnitude and in direction with time. The diffraction of the
stress field by a cavity containing o hardened underground instslletion
mst be considered with a view towards obtaining the following information:

1) Stresses producod by the dynamie loading of the cavity with a view
tovards devermining the strength of the cavity as a whole. In addition,
the velocities, displacements and accelerations of points on and near the
cavity boundaries are required for the determination and evaluntion of shock
effects and for the establishment of failure criterin for the cavity and
its contsats.

2) Shock spectra for a) the total accelerations imparted to the con-
tents of the cavity, and b) the relative Gispimcements of the contents of
the cavity (relative to the cavity boundaries) when the cavity ic onvolopod
by the stress waves produced by the explosion. The contents of the cavity
may be shock mounted and the shock spectra are required for an optimalization
of the design of the installation.

The solution Yo the general problem of the diffraction of the rather
complicated stress field by the cavity in an elastic mediwn can be constructed
for casep of interest by the superposition of the results obtained from come
besic: doss complicated probloms vhich are considered in Part II. specifically,

the diffraction of the stress field produccd by P (dilatational) and 8 (shear)




)

wvavas respectively with plane wave fronte are coneidared, In both cases
the genarsl solution is obtained for 2 step pressure in time which can
be used a5 influence cocfficients to give the results for waves with
arbitrarily time varying pressures by means of Duhamel integrals.

The solution of thesc problems (stresses, velocities and displace-
ments) can be used to construct solutions for the general case in which
wie incoming stress history has o more complicated character.

Moreover, they are of direct use and importance in the supersciomic
range (V:>cp) An vhich the loading on the cavity has been shown to consist
of P and S waves with plane fronts carrying pressure components which decay
in tine [see Appendix A). For this range, the solutions represent on
approximate answer to the actual physical problem and can be uwsed directly.

The obove theory has been determined with the ascumption that the
cavity containing the inatu;lntion is not lined. Practically cpeaking, the
problem of the cavity lining--structural or anti-spalling--is quite important
in the design of these installations and must be studied. A method of attack
in which the results obuained for unlined cavities are used as influence
coefficients in integral equations for the corresponding uolutions to cavi-
ties with linings 45 also developed in this report [Section 11].

Section (9) gives the results for stresses, velocities ond displacements
produced at the boundary of the cavity as it is enveloped by planc P and 8
waves. Curves are presented for the case in which the prsssure inputs in
vhe waves are step functions in time, cs vwell as for waves with particular
time decaying pressures produc:d by a hypothetical 20 MT surface burst. In
addition, the superposition of the incoming P and § waves is shown for a
particular tunnsl 1ocation.\
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Ser.tion (10) contains the shock spectra curves for the total accelera-
tion anc relative displacement of installations which are shock mounted in
the cavity., It is assumed that “he equipment can be mounted in several difs

ferent wiys and shock spectra are presented for seveial cases of interest.

Herctcefore, sbock spectra uscd in this type of design were computed from
free field input pressures, end tne effects of the diffraction of the waves
by the cavity wvere neglected. The shock spectra of Section (10) include the
diffraction effects and are consequently more appropriate; they will now
supersede the free fiecld spectra and should be of considerable use in
obtalning more accurate design data for the shock mounting of the cavity
contents.

Section (11) presents an outline of the theory by which the varicus
results obtained for an unlined cavity can be used to determine the corres-
ponding results for a cavity with a given elastic lining. Numerical solu=-
tions of the resulting integral equations are not yet available, but should
be completed in the near future for severel cases of interest.

Secvion {iZ) prevents sume general conclusicns re
obtained in Sections (S)~{11).

Following the format of Part I, the theoratical formulations of the
vork are presented in Appendices C, D, E, while the results are reported in
Sections (9), (10), (11), (12). The results of some tosts to determine the
elastic properties of granite und: - static loadinsz are given in Appendix (F).
The folloving recurring symbols are adhered t0 in Part II of this report.

e, Velocity of pressure (P) waves in & linesr slastic solid.
¢, Velocity of sheer (8) waves in a linear elastic solid.
The velocity ¢ eppearing in the abscissa of the various curves in Part II

refers to the velocity of the incoming wave a8 shown in the figure or noted.
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9. STRE3ISES, VELOCITIES, AND DISPLACEMENTS PRODUCED IN AN ELASTIC MEDIUM
BY THE DIFFRACTICH OF PLANE "P" AND "S8" WAVES BY A CYLINDRICAL CAVITY

An infinitely long cylindrical cavity in on infinite clostic homogeneous
and ic.iropic medium 48 acted ~n by & plags shock wymve vhose vmye front 4o
parallel to the axis of the cavitiy. The shock wave propegates through the
medium with 8 coastent velocity Sy {"P" wave) and envelops the cevity
(Fig. 9.1). For genorality, it is assumed that the direct stress components
carried by the wave are ¢U(t) and eolU(t) , which ave respectively
parallel and perpendicular to the direction of wave prropagation.

The colution of this problem for the inputs qU(t), (¢ = 0) or coU(t)
only, my be used to construct the solutions to problems in which the firee
field has o more general noture. For the superseiomic range, in vhich o
component of the input io actually & plane wave, the ‘ralue of ¢ for o plane
vave front must be talen as ¢ = -1/3.

Preliminary results for the stress field produced at the boundary of
the cavity by the incoming "P" wave have buen roported in [(17), (18], (19],
wvhile the complete plone strain solution to the problem has been given in
{20]. The present papsr cxtcndc thase results to includo both P end S waves.
In addition, rosults arc precented for the vo‘locity and displacement {iclds
yroduced in the medium at and near the covity boundary. Tho theoreiical
development for the velocities and displacements are presented in Appondix D.

Although the true physical problem under consideration requires a semi-
inrinite mediws with & roughly p®ane boundary at z = 0, it in oooily shown
(Ref, 18, Pg. 36} that in the renge of practicnl interest, the plene boundary

essentinlly has no effect during times of interest and the results ottained
by considering tho modiwm to bo infinito wili bo satiofactory for tunnels
vhere depth "D" is greater than 4 to 5 times the redius "a". For such
installations, the major effects such as meximum hoop stresses, occur ab
the boundary of the cavity at times considerably shorter thon the arrivel
tioe of the relief vave froa the plane surface at z = 0.
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e) Hoop stress produced at the boundary of o cavity (20].

Fige. (9-2)-(9-8) show the hoop stresses Ogg Produced at points on
the cavity boundary by various stress waves which envelop the éavity. The
stresges at two pointo are presented: 6 = 0°, the point at which the shock
front first hits the tunnel; and 6 = 90°, the point at which the maximum
stress concentration is expocted. In determining %0 by the annlytical pro-
cedure given in (20], only the terms n = 0, 1, 2 plus tho frec field stress
components were included; the analytical justification for terminating the
series after the n = 2 term is presented in (18], Pg. b1 and [20].

Fig. (9-2) shows the hoop stress at r = g, which 1s proluced by an
incoming plane shock wave with a step pressure distribution in time, The
pressure component ¢U(t) at right angles to the direction of propagation of
the wave 18 taken equal to zero. The results obtained at long times must
approach the well known static sclution for a cylindrical hole in a uniaxial
pressure field, i.e., o stress amplification at @ = 90° of 3 (compression) s
while the stress at 6 = 0° 15 & tension equal in mapgnitude to unity. It is
seen that the strees concentration is amplified by the dynamic loading in
the ratio of 3.28 to 3 at % trunsit 4imez, at 0 = 90° and 1.16 to 1.00 at
6 = 0° It my be noted that for & step pressure wave, the problem is essen-
tially of a quasi-static nature; since the dynamic amplifications are small
percentagewise. It is elso of considersble interest to note that maximm
stresses are produced at about four to five transit times of the shock wave
across the cavity, .

Fig. (9-3) shows the hoop stress at r = a which is produced by an
incoming plane shoek wave which has no prea;mra in the direction of propage-
tion of the wave and = pressure ¢U(t) in the direction perpendicular to the

propegation direction of ths vave.
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The results of Fig. (9-2) ana (9-3) may be used to construst, by osuite
avie integrations, solutions for cases in which the free rield pressure

is of o more general nature.

L R Sy

Mg, (9-4) chows the stress Ogg B8t 0w 0%and € n 90° for a plane

; step shock wave with o plane front progressing with a velocity c o’ i.e. the
vtanderd P wove of linear elasticity theory. The requirement of a plene
. front necesoitates a transverso pressure component with ¢ = -1/3 i.a., ~ 1/3 U(t)
(Fig. 9-1) s well as o pressure U{t) in the direction of wave propagation. =
For the dynamic loading, the stress amplifications are from 2.667 to 2.92 at
6 = 90° (compression) and from 0,00 t0+0.11 ot @ = 0° (tensfon). These
results may be used directly to obtain meaningful results jin the super-
seismic range in vwhich the vmves which envelop the cavity are essentieliy
plane waves.
The hoop streos %a6 produced by a step shock wave may be used as an
infiuence function to de:ermine the corresponding stress produced by a wave
vith » time varying pressure, P(t), by the Duhamel 1ntegza1(§)(Fig. 9-5).

T
%0 * Fols, * f%_), %6, (t-7) s (9-1)

To illustrate the above procedure, Figs. (9-6)-(9-7) present the hoop
stresses produced by plane waves with decaying pressure time histories.

The pressure time histories of the P vaves which envelop the cavity are
taken as those produced on the s xrface by a 20 MT surface burst &t the

6500 psi (2400 ft. from G.2.) contour and the 2000 poi (3200 ft. from G.2Z.)

(*) Because, only a limited mumber of modes have “een used in determining
the stress due to the plene shock wave, the Duhamel integral should not be
applied vhen the pressure-time history,P(t), contains significant high fre-
quency components with time constants of 1ess than 1/2 of one transit

time.
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contour. These prassure tine curves have been given by Brode [1). Tae
cavity is considered to have & radius of 17.5 ft. in an elastic medium in
vhich ¢ = 17,300 rt/sec and ¢, = 10,000 ft/sce.

Fig. (9-6) gives the stress Ogg 8t 0= 0°® and 6 = 90° for a plane
P wvave with a Brode pressure input with Po a 2000 psi. Due to the dzcay
of the pressure with time, the Duhamel {ntegral shows a maximm compres-
sive siress of 4500 psi at ¢ = 90° while the tension at 8 = 0° is 290 poi.
Fig. (9-7) shows the corresponding curves for o pressure input with
Po = 6500 psi. Tac maxirmm coopressive stress at 9o° is 12,300 psi, while
the tension at 8 = 0% s 930 pai. It 48 of interest to note that the
amplification of the compressive stress over Po at O = 90° was 2.25 for
the 2000 psi loading and 1.89 for the 6500 psi loading, as compared to
2.92 for a step pressure looding. Since the pressure-time decay for the
2000 psi wave was considerably slower than that for the 6500 psi wave, the
hoop stresses are closer to those for o step wave.

Fig. (9-8) chows the hoop stresn at & = ¢° ana € = k5° for & plane
step shear wave with & plans front and a constant velocity ¢, i.e. the
standard 8 wave of linear elasticity theory. At long timon, the stross
approaches the static solution for a cylindrical hole in a bi-axial pressure
field vhich produces the shear stresso distribution which is carried by the
wave; i.e. & stress amplification at 8 = 450 of 4 (compression), It is seen
that the stress is amplified by the dynamic loading in the ratio of .37 to
b at 45° and ¢ = b transit times, and 112 to O at 6 = 0°, It may be noted
that as in the case of the P wave enveloping the cavity, the problem fii- a
step pressure 1x:xput is essentially quasi-static in rature (since the
dynamic amplifications are snail percentagewise) and that meximum hoop
stresses are produced about two ‘to.three trausit times of the S wave across
the cavity. The theoretical resulis for the diffraction of the 8 wave by

"
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the cavity can be derived from the theory for the P vove; this davelopment
is given in Appendix (C).

In the superseismic range (V > cp) ; the pressure waves that propagate

et o

through the medium are standard P and 8 vaves with plane fronts and propa-

gation velocities °p and csroapoctivoly. These waves can bo considored

[I———

t0 have the cape pressurc-time history as the surface pressure, and ampli-
tude factors which are given by Fig. (A-2), Appendix A, The P and S waves
are inclined to the surface by the angles o = nin'l V and B sin'l ¥y,
6 ¢

respectively. If the cavity is located at a aurriciolr:b depth (oeo Scc.s6]
60 that surface wave effects are negligible, one can obtuin a realistic pice
ture of tho stress build-up at the cavity toundary by superimposing the
incoming P and 8 waves with thoir proper amplitude factors end tirmo delays
(duc to different angles of inclination and differcent velocities >f propa-
gaticn),

A5 an exampls of the superposition procedure described cbove, consider
o cavity of rodius a = 17.5 £t. in an elastic medium in vhich cp a 17,300
t‘t/esc and c." 10,000 ft/oec. The cavity io located at o depth of 500 £t,
at the 6500 psi surface pressure contour from a 20 MD surface burst, i.e.,
at a distence of about 2000 £t. from Ground Zero. Tho air shock velocity
at this distance is nbout 22,000 ft/sec; this corresponds to & Mack number
M= -éY- = 1,27. From Appendix A, the P wave has an amplitude factor of
0.97 aﬁd is inclined at an angle , = 51%.541 to the horizontal surface,
vhile the 8 wave has an amplitude factor of 0.53 and an engle of inclination
of B = 2648, [Bee Fg.19-2)} Fig. (9-10) shows the hoop stress
vhich is produced at various points on the cavity boundary by the supere
position of the P and 8 vaves with their appropriate time factors. Iue to
the differance in propagation velocitieo of the two waves, the delay time
between the errivel of the P and 8 waves is considerably in excess of 5 transit

tizas.




-102-

Consequently, by the timo the shear wave arrives at the cavity, the
hoop atresses procuced by the P wave have docoyed sufficiently so that the
peak of the sun of the otresses produced by the two vaves ( 6 az20°) 18 .
sti)l lower than tha peak hoop strecs at @ = 90° produced by the P wave at
enrla.r timen, before the cyxrival of the 5 wave. It may be noted that the
maximm peak stress of 11,930 psi (compression) is in excess of the allows
eble stress vhich a granite rock could reasonably be expected to carry;
therefore, one must consider lower pressure contours for the case of unlined
cavitices.

Fig. (9-11) shown the otress g, ot 0 = 0° and 6 = 90° for o plane

[:[2]
P wvave wii & constant velocity of propagation, ep = 10,593 ft/uec.

[c = 6000 ft/vec.] and a pressure time history corresponding to the surface
presoure at the 3200 £t [2000 psi] contour. The air blast at this con-
tour has & veloeity of 12,100 ft:aec.,.thus making the case superseismic
with a Mach number of 1.17 and consequently an amplitude factor of 1.0 in
the p vave.*) e cavity has o radius, & = 17,5 ft. The maximum oop
atrass 4c produced at 8 = 00° and har n maonitude of LS00 poi. Thic 18 a
reasonable gtress for a good granite to cerry and onc may conclude that a
reasonable pressure limit for feasible underground installations will Lo

in the neignborhood of the 2000 psi contour for the hypothetical 20 MT

surface burst under consideration.

Comparison with the results of Ref. izLl.

The analysis presented in Sec. (9) is bused on the mode spprosch re-
quiring an expansion of the stresses as a function of 8 in a Fourier series.
In the response %0 a step wave, the higher terms of the series could be

{mmored, and only the terms up to and including n = 2 were used, It is

(%) See Appendix A, Fig. (A-2). As pointed out, the steady-state solution
for & Mach mumber Bo close to vaity msy not be very accurate end the
actual boop Gtresses et the points in question will be somewhat lower.
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interccting to note that results ara available from an elternstive enalysis,
vwhich permit checking of the present results over part of the circunference
of the tunnel.

The alternative snalysis [21] 4o also approximate; it arplie. only
for limited values of the angle |6|< 60°, The hoop stress 0y, token from
Fig. (7) of Ref. [21] is plotted in Fig. (9-12). This figurc also shows

o
the peak valuas of this stress --SQ found by the present umlyoin(*)

for
0 = 22,52, 45°, 60° ana 90°. It 10 ceen that the values for 22.5° and ks®
agree quite well; for 60° the precent analysis gives neorly 1C% more stress
thor Rer. (21]. As the latter becomes more and more approximate as 6
increases, the present theory is believed to be the better value. Finally,
for 8 = 90°, Ref. [21] gives no rosult ot all, but states an extrapolation
that the maximm value of f_g_o is about 2. The present analysis indicates
that this extrapolation wus not justified, the actual value being about 3.
It is easily seen that the maximum stress :5-?- for a step wave can not
poseibly bs 2, but must be larger than 2. This can be ccncluded from the
fact that the dynamic peak stress rmot be larger, or at leasr equai to theé
static peak stress. The lattor 153%8- - 2,52 forv = 0.33 and 2.67 for
v = 0.25,
To find the maximun amplification of stress for a step wave, or for
a decaying wvave with a decay conatant of more than one half of a transit
time, it 16 therefore appropriate to us» the present annlysis rather than
the extrapolation in [21]. %o find the response duc to prossure waves which
have very fast decays, the present mode approach is not suiteble, but the
approach of {21} could be used instead. Numerical werk for such a purpose,
conpidsrably beyond that presented i1 [21], would be reguired.(“) Yoreavor,
#) Note that Re?. [2L) and the present enalysis use a different e of
Polsson's ratio, i.e. v= 0.33 and y= 0.25, respectively.

(**)An estimate of the pressure at enrly times, given in {18}, pp. k2-L3,
19 also availeble and myy sometimes suffice.
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it should be noted that situations in which the pressure decay is sufficiently
fant such that the present analysis becomes unsuiteble, will occur only

very close to Oround Zero, i.e., in a region of uxtremely hiph prassure.

b) Velocitias and displaccrments produced ab points in the clastic medium.

The displacement and velocdty components w, v, W and v which are pro-
duced at points in the elastic medium by a plone otep shock wave are given

by Eq. (34)-(37), Avpendix D, Mumerical reswlts are presented for theoc
quantities at points on the cavity boundnry, r = a. As in the case of the
strensses, the velocitics and displacements produced by o step shock wave
myy be used as influence functions to deteymine the corresponding quanti-
tieo produced by o wave with & time varying pressure P(t), by a Duhomel
intogral similar to Eq. (9-1).(*) In turn, these results can be used as
input functions for the determination of shock offects which are imparted
0 shock mounted installations within the cavity. They will be used in
the determination of the acceleration and displacement shock spsctra which
are prosented in Seccvion {10).

Fig. (9-13)-19-14) chow the displacemonts and veloeitios produced by
& plane step shock wave at the boundary roints, 6 = ®ond 6= 90°. At
these points, the moticu is purely radial, i.e., v and v = 0. More compre-
hensive results are given 4n Fig. (7)-(8), Appendix D, in which the veloci-
ties ¥ and v are given for othor points on the cavity boundary.

The rigld body translationdl motion of the cavity boundary in which
the cavity maintaing its cylindrical shape and translates in the direction of
the incoming atep shock wave, 1s extracted from tle totel mution in See. (6),

Appendix D. Fig. (9-15) shows the rigid body displacement, velocity and

{#) Hee Appendix (E], Part iil-a, for the formal dorivation of cXpres-
siona for the velocities and displacemente produced at points on the
cavity boundary by waves with Brode pressure inputs.
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acceleration of the cavity boundary, under the step pressure shock wave
londing. These results may also Je used as influence coefficients in
Duharel integrals to obtain co v ug 4wntities produced by shock
vaves vith time varying pressure histories. Rosults of this type for
waves with Brode pressure inpu%s, will be used as input functions for

the determination of acceleration and displacement shock spectra in
Seation (10).
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at) = cos™ (1 - %)
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10. SHOCK SPECTRA FOR INSTALLATIONS IN CYLINDRICAL CAVITIES IN ELASTIC MEDIA .

In many caces, the various instoallations which wre placed in undere
ground cavities will contain components which are quite shock sensitive.
Consequently, they will require spacial mountings vhich are capeble of
aboorbing the shock effects produced by the pressure loading on the cuvity.
Suock spectra for accelerations and displacements are frequently utilized
in the design of shock mounted equipment. The present section presents
typiend shock spectra for o) the motion of various points on the cavity
boundary, ond b) the rigid body (mean) motion of the cavity as a whole.

The analytical formulation for the development of shock spectrs has
been presented in deteil in Appendix (E). Two porticularly usefu’ types
of spectra are considered; 1) opectra for the peak absolute acceleration
. which is imparted to a shock mounted installation in the cavity; 2) spectra
- for the péak relative displacement of the installation in the cavity, with
respect to the motion of pointe on the cavity boundery to which it is
attached. The former spectra give the acceleration design requirements

for & gives shock mountsd inctallotic ; the latver glve clesrance require-

Koan w
¥

nments for the mounting of the installation within the cavity.

- The shock spectra developed in the present Section and in Appendix
’, (E) include the effects due to the diffrection of the shock wave by the

cavity, Herotofore, shock spectra which were used in the desiyn of under-
¢ ground installations were computed {rom free field input pressures only,

that 418 from the readings of a pressure gage at a point in & mediwn with
- no tunnel, and the effects of the diffraction of the shock wove by the
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be devermined from the analysis in Appendix (D); the procedure for ubtain-
ing the total displacement under the combined P end § wave loading, 1is
identical to that described in Section (9) far the determination of the
hoop stress.

(a) Shock Spectra for the Rigid Body Motion of the Cavity.

Consider a mass M which is mounted to the .boundary of a cavity by
either of the two methods shown in Figure (10-1). In the first case, the
mass 1s connected to the boundary at many points; each mounting is charaz-
terized ss being a linear spring. For this case, the relative motion of
any tvo points on the cavity boundary will be averaged out by the springs
which are connected to the other support points. Consequently, the mass
M will react to the average motion of the cavity which 4s a rigid body
translation of the cavity in the direction of Lhe shock wnve propagation.
In the second case, the mass is connected as rigidly as possible to a stiff
structural lining. Again, the mass will react to the rigid body transla-
tion of the cavity as n whole.

Figure (10-2) shows acceleration and relative displacement spectro
for the rigid vody motion of a ce,vs.ty.of radius r = 17.5 feet in on clase
tic medium where ¢, = 17,300 feet/sec, The cavity ie subjected to o P
wave carrying a Brode pressure input with P = 6500 psi for a 20 MT surface
burst, For comparison, the corresponding acceleration spectrunn from the
free field pressures only is chown os 8 dotted line, It 45 notcd that
for higher frequency components, the free field accelerations are mich
larger than those in the speetrum from the analysis of Appendix (E Which
includes the diffraction effects; the difference incrasses repidly as the

frequency increacco. Tae difference is due to two causoes! 1) the
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be determined froa the analysis in Appendix (D); the procedure for obtain-
ing the total dispiacement under the combined P and S wave loading, is
identical to that described in Section (9) for the determination of the
hoop stress.

(a) Shock Spectra for the Rigid Body Motion of the Cavity.

Convider 8 mass M which is mounted to the boundery of a cavity by
either of the two methods shown in Figure (10-1). In the first case, the
mass 18 connected to the boundary at many points; each mounting is charac-
terized 8 being & linear spring. TFor this case, the relative motion of
any two points on the cavity boundary will be averaged out by the oprings
vhich are connected to the other support points. Consequently, the mass
M will react to the average motion of the cavity which is a rigid body
translation of the cavity in the directlion of the shock wave propagation.
In the second case, the mass is connected as rigidly as possible to a stiff
atwioturel lining. Again, the mass will react to the rigid body transla-
tion of the cavity as a whole.

Figure (10-2) shovs accelerstion and relative displacement spectro
for the rigid body motion of & cavity of radius r = 17.5 feet in on clas-
tic medium wnere ¢ 17,300 fect/oee. Ths covity s aubjected to o ¥
wave carrying a Brode pressure input with P = 6500 psi for & 20 MT surtace
burst. For comparison, vue curresponding acceleration spectrum from the
free field pressures only is shown as a dotted line. It is noted that
for higher frequency components, the free field accelerations are mach
larger than those in the spectrum from the analysis of Appendix(E khich
ineludes the diffraction effects; the difference increases rapldly as the

frequency increagses. Tho difference is due to two causes: 1) the
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diffraction effect which i6 maximun at relatively early times, and thus
affects the high frequency portion of the shock cpectrum, and 2) the fact
that the rigid body motion of the cavity produces the shock spectrum for
the configurations in Figure (10-1) rather than the motion of & particle
subjected to the full free fiold vressure. The spoctrum for the relative
displacement of the shock wounted mass M with respect to the motion of
the cavity boundary is also shown in the figure.

Figure (10-3) shows similar results for the same cavity in the elastic
medium, In this case, the cavity is subjected to a P wave with a Brode
presoure input vith Po = 2000 psi. Agein, a 20 MT surface burcst is consi-
dered. This case is {elt to be more reulistic with respect to an actual
installation, since it has bean shown in Section (9) thet shelters in
rock at the 2000 psi contowr might be theoretically feasible.

() Shock Spectra for the Motion of Individual Points on the Cavity
Bouadary.

Consider a mass Mwhich 16 mounted by a linear spring to a point on
the boundary of the cavity. Figure (10-4) shows the shock spectra for
the motion at the boundary point @ = o°, Again, the input wave is pro-
duced by a 20 MT surface burst, and the peak pressure Po is 6500 psi. It
is seen that the free field accelerations in thic case are considerably
lower than the accelerations from the analysis of'Appendix (E), particularly
at high frequencies. 'ﬁus is to be expacted, since the presence of the
free cavity boundary gives rise initially to a doubling of the particle
velocity at the boundary point 6 = 0° and consequently, 4o an increase
in the displacement at the boundary points at early times. Hence, the
high frequency accelerations at the peint 6 = 0° are considerably higher
than those obtained from the free field analysis and the more accurste
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analysis vhich includes the diffraction effects must be used. The spectrum
for the relative displacement of the chock mownted mss M with respect
to the motion of the cavity boundary at 6 = 0° is also shown in the figure.

Figure (10-5) shows tha shock spectra for the motion of the boundary
point 6 = 180° under the action of a P wave from & 20 MT surface burst
with a pesk pressure, P = 6500 psi. In this cose, the free field accelera-
tion spectrum is considersbly higher than the spectrum including the
diffraction effects; the diffraction actually decreases the displacement
input and consequently the high frequency accelexations.

The motion of the cavity boundniy at the points ) = 0° and 6 = 180°
that have been considered thus far 1s purely radial; the tangential compon-
ent v 18 equal to zero ot all timen(*). I{ehee, the linear oscillator
concept can be applied in determining shock spectra for equipment in the
cavity which is connected to thece points, However, other points on the
cavity boundary will undergo both radial and tangential displaccuents
and sheek spectra for both directions are required., Consequently, the
shock mounting of equipment to such points must be capeble of absorbing
accelerations in both the radial and tangential directions, i.e. ar
essentially "two-way" shock mounting is required.

{e) Conelusions

It is obvious that the most favorable conditions for shock effects
will be encountered if the equipment is shock mounted in the cavity such
that it will react to the average motion of the cavity (rigid body notion)
rather than to the motion of individual points on the boundary of the

tunnel. Such mountings may be difficult to obtein practically. However

(#) It should be noted that this ic only true if the S wave effects can

be neglected,
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if puch o mounting can be achieved, the equipment Vill be subjected to
shock accelerations vhich are considerably smaller than those given by
the free field shock cpectra.

In the case of equipment which is attached to a point on the tunnel
circunferencs, the spectra allowing for diffraction differs considerably
Trom the free field epectra. The peak accelerations for a point @ = 0°
are considerably increased by the diffraction. However, the opposite
situation prevails at 6 = 180°, in which the shock accelerations includ-
ing diffraction effecis are lover than the "free field'values.

In each case, the design accelerations for high frequency components
¢re greatly influenced by the diffraction effects of the wave by the
cavity, Consequently, it is felt that the more accurate theory of
Appendix (E), which includes these effects, should be used in the develop-
ment of shock spectra and design criteria.

It should be noted that the shock spactra which have been presented
in this Bection as examples, are based on an input of a sharp fronted pressure
(P) wave with a zero rise time. For the case of a wave with a fin‘ie riae
atensity of the hich trcq_uéncy portions of the shock spectra would

be substantially decreased.
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11. Diffraction of Pressure Waves b a Cylindrical Elastically Lined
Cavity in an Elastic Medium.

The stresses and motions produced by the diffraction of pressure
waves by an unlined cylindrical cavity in an elastic medium have been
studied in Reference {20] end Appendices (C) and {B). It ia of interest
to avaluate the effect of the use of a structural elastic lining for the
ca ity boundary. Particulerly, the effect of such a lining on the strength
of the cavity as a whole :nd on the boundary displacements which are the
input functions for thz determination of shock spectra for instellations

within the cavity, must be gtudied.

The problem considered is that of an elastic shell in an infinite
elastic medium under the action of a plane step pressure vave which travels
through the medium and envelopse the cavity. A method of solution which
utilizes the solution for the corresponding unlined cavity problem as
intluence coefficients can be used tc obtain the corresponding results
for the elastically lined cavity. Such a method hus already been applied
successfully for a radially cymmetric problem in an acoustic medium [22].
The generalization of this method for the present problem is considerably
nmore compiex and represents a major computationsl effort. This effort is
currently under wvay; consequently, only an outline of the method of solution

is presentesd in this Section.

An infinitely long elasticelly lined cylindrical cavity in an infinite
elastic homogenecus and isotropic medium is acted on by & plane pressure
vave whose froant is parallel to the axis of the cavity. The shock wave

propegates through “he medium with a constant velocity cp and envelope

" the cavity [Fig. (11-1)).
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a) Determination of the Equations of Motion for the Shell.

The response of the elastic 11n1ng') to the transverse shock wave
is otudied by considering the ahell in vacuc &8s a separote siructure
vesponding to the dynamic forces exerted by the surrounding elastic
medium and by the incoming chock wave. Using the modes of free vibration
of the chell ir vacuo as generalined coordinates, its response can be
axpanded in terms of the infinite number of these modes, The mode shapes
and the corresponding frequencies that are required have been developer.
in Roference (23], Let the displacement of the shell be written in terms
of the generalized coordinates Eh, T{n and q (n f 0):

w(6,t) = 'io(t) +Z'[qn(t) +-;n(t)] cos né _ (31-1)
D=
v(e,t) -Z[E‘%(ﬁ - dn'i'n(t)] sin no (11-2)
Dwl n ‘

The quantities q, are the coordinatea for the primarily inexlensional

motions of the shell; the quantities '?q'o and 'q'n are the coordinates for the

I

primarily extensionel moticns.

The coefficient dn is given by the relation
I 2 3 4 i

2 2 2 .y 2 2 2

ool [aen®) ] 1 (%Y, (2008 1 ((1-:1 ) )1 ] )

dn- en [ n ]52A+{< n>+< n2 >a1;+ n a’'A (a-3)

Yor properties of practical interest and for the lower modes (n < 5),

there is little coupling between the bending and extensional effacts
bocause 521\ > 1.

*) The lining is nov essentially an elastic shell in an infinite elastic
mediun,
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0
o

For such cases, d - and the frequenciea") w, and'a\:“; are given by

2
et 2 2
2 BI(len n
w - -JT-L—- (11-4)
o na (n2+1)
-2 TFA ,.2
(Dn [ ] -? (n +l) (1.1-5)

where E = —§—§ » I and A are vhe moment of inertia of the cross section
ley

of the shell with respect to a principal axis at right angles to the rlane
of the ring and the cross sectional area of the ring respectively, snd n

i8s the maos per unit area of the elastic lining.

The equations of motion for the shell may be written in terms of the

generalized coordinates 1, and En H

Q

'cin-rwﬁqn-ai nwl, 2,3, sae . (11-6)
qn +(Unqn L] g nw=0, 1., 2y 35 eor (ll‘-{)
n

where Qn e.miaﬂ are generalized forces and L and En are the generalized

mabses; ¢
1
mn-m<l+—2-> (11-8)
4
= 2 .
m, = 0l + ). (311-9)

The generalized forces Qn(t) and 'c'fn(t) will be evaluated leter in this Bection.

%
) For cases in which the coupling between the bending and the extensional
motions is significant, the frequencies must be deternined from the

expreasions given by Eq. (A<8) of Reference (23],
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b) The Response of the Boundary of an Unlined Cylindrical Cavity =«
Determination of Influence Coefficicnts.

The displacements at the boundary of an unlined cavity to a step
pressure wave have been evaluated in Appendix (D) of this paper.
Essentially, the results were obtained by the addition of an effect
produced by the free field component of the incoming shovi: wave plus
the effects produced by the application of corrective boundary tractions
vhich are required to produce a traction free surface at the cavity
boundary. For the present purpose, the free field componente must be
expanded into a Fourier series in @, and added to the corresponding
components from the corrective tractions. IFinally, the total motion of

points on the boundary of the unlined cavity 18 obtained in the form

ww) P (t) cos nb (11-10)
n};o A

v -Zon(f,) sin nb (11-11)
n=l

Two edditional coefficients are required from the unlined cavity
problem. They are respectively: 1) the boundary displacements wA(t) cos né

w U{t) cos n@;

end vA(t) sin nf produced by the applied boundary tractions L
n

99 =0 [(Fle (11-2)]; &) the boundary displacements wB(t) cos nf and
n

vB(v} #in ué produced by tho applied boundary tractions o

. =0;
2,

99 * U(t) sin n9 (Fig. (11-3)]. Thes> quantities can be evaluated from
n

the results of Appendix (p) and willi be used as {nfluence coefficients in

Duhamel integrals for the snalytical determination of the generalized

coordinates qn(t) and 'in(t).
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¢) Derivation of Intogral Equations for thu Evaluation of the Generalized
Coordinates g (t) ana ’{n(t).

Consider an clastically lined cavity in the medium under the action
of the step shock wave. The total radial and tangential displacements of
the shell boundary can be derived from the superpositicn of the corresponding
displacements of the unlined boundary plus the displacement produced by
unknown radial and tangentiel forces X(t) and Y(t) respectively which are
required to force the unlined cavity into & compatible displacement with
the elastically lined cavity, The forces X(t) and ¥(t) {Fis. (ll-h)l axe

expand )& intc & Fourier geries in 6:

X(t) .an(t) cos né (11-12)
n=0 )
[:-]

Y(t) ..an(t) sin 0o - (11-13)
D=l

The compatibility equation on the radial and tangential displacements of
the shell can be written in terms of the generalized coordinates qn(t) and
En(t), and the rorces 'a(t) and Yn(t). The sum of the displacements due to
1) the shock wave on the unlined cavity; 2) the applied boundary tractions
L xn(t) cos 6, oo = 0; 3) the applied boundary tractions 0 = 05
09" Yn(t) 8in nf, must be set equal to the actual displacemonts of the

shell itself [Eq. (11-1)-(2)].

The radial and tangential displacements produced by the traction
Opp ™ Xn(t) eus 8, 6o = O, spplied to tho cavity boundary, cen be evaluated
in terms of the knowm displacement coefficients WA(t) and vA(t) from the

Duhanmel integrals® :

*) The derivation of formulas of the type given by Eq. (11-14)«(13<15)
is sho'm in deteil in Reference [22)']1.)
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4
ax
- [ 3,(:) v, (bes)dv (11-124)
1'.
f d-r A("“‘)‘“ (12-15)
o

In a similar manner, the radiasl and tangential displacements dus to the

boundary tractions o, = 0, 6o = Yn(t) 8in n0, are evaluated in terms

T
of the known displacement coefficients vB(t) and VB(t) from the Duhamel

integrals:

4y
v -j (T) B(t-r)d‘r (12-16)

o

'3
v=f
- [e]

The coopatlbility equations for the shell displacements thus become:

B(t-f)d-r (11-17)

t t
daxX dy
P(t) +f gi“) \IA(t-T)d't +f —g'f;)' VB(t-‘t)d‘t - qn(t) +'En(t) (11-18)
° o
¥oax (1) ®ar (v) (t)
G(t) + f T Vp(t-t)dr + f :f vp(tet)ar = qgn +ag(t) (11-19)

o o

Eg. (11-18)-(11-19) are a pair of coupled integral equations on the

unknowvn elastic forces Xn(t) and Yn(t).

The generalized forces Qn(t) and 'an(t) vhich eppear in Eq. (11-6)«(11-7)
are nov determined as functions of the unknown forces xn(t) cos nd and
Yn(t) sin nf. A gset of two simultanecous linear equations in !n(t) and {ln(t)
are obtained. These equations are then solved s!__.zultaneoush/ for xn(t) &nd -’

Y (t) es functions of the generalized coordinates q and 'in :
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Xy(8) = ¢ (@ T @ B) (11-20)
Yn(t) =g (‘ln: Tin) @ E’n) {1-21)

Substituting Bq. (11.20)-(11-21) into Eq. (11-18)-(11-19), a set of coupled
integral equations on the generalized coordinates q, and‘in are obtained.

These cquations can be solved by numerical methods, using finite
difference theory. Essentially, the integrals in Eq. (11-18)=(11-19) ure
replaced by finite difference summations from which recurrence formulas
for the coordinates g (t+k) and En('uk) are cbtained in terms of their

known values at previous time steps.

Once the generalized coordinates 1, and 'ﬁ'_n are evaluated, the displace-
ments of the shell are computed from EqQ. (1X-1)-(11-2). G&imilarly, the

shell velocities and accelerations ars also computed.

The direct stress (hoop stress) in the shell is evaluated from the

relations
oS¢ (11-22)
(1-v°)
€l (vt (11-23)
. (-1

Substituting Eq. (11-1)-(11-2) into the ebove equations, the oth componont
of the direct hoop stress beccues

E 2 .\ .
- — 1 6 11-24
G“n m‘ (n+)qn cos X ( )

S P P
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The nt'h component of the flexural stress 9 in the shell is given by

n

“-1)Ed b
an . -‘5—;-)- (q, +q,) cos no (11-25)
vhore 4 is the distance from the neutral axis of the shell to its extreme
fiber. The total hoop and bending stresses are evaluated by summation of

the components %¢ and % respectively.
a n
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12. CONCLUSIOR AND SWMARY -- DIFFRACTION EFFECTS

Bections {9)-(11) have considered three basic theoretical problems
vhich may be of use in the analysis and design of underground structures
ond thelr contents. These problems are respectively: 1) the stress,
velocity and displacement fields produced in an elsstic madium Ly the
diffraction of plene P and § waves by an unlined cylindrical cavity;

2) the determination of shock spectra for installations that are mounted
in cylindrical cavities in elanstic media; and 3) the stresses, velocities
and displacemente for the case of the diffraction of plane P and 5 waves
by & cylindrical elestically lined cavity, i.e. o structural shell which
would house an instellation. :

The shock waves have been agssumed to have plane fronts wkich are
parallel to the oxis of the cavity. The plane wave solutions can be
applied directly to the superseismic range (V> ¢ p). Moreover, they
can be used to construct by superposition, the solution to more genoral

diffraction problems in which the streps field produced by the surface

expiosion does not eonsis

Iid

ef planc vnves but 4e conuidarably more com-
plicated. The vroblem of the envelopment of the cavity by a shock wave
with e wave front perpendicular to the axis of the cavity, has not as
yet been treated, and remains to be analyzed.

It should be noted that the limitutions on the use of an elastic )
theory which are noted in Part (I) alsc hold for the present cases. The
application of the theoretical results obtained in Sections (9)-(31) is
valid only in those portions of the medium in which the assumption of
linear elssticity is tenable. It may be inferred from Appendix (F)
that this is not an unreasonable assumption cutslde of the crater region
in a good granite rock,
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Specific conclusions on the use and upplicability of the various theo-
retical reoults are given in each Ssction and will not be repeated here.
It may be noted however that for o pressure wave with o step pressure
input, -the hoop stresses produced on the boundary of an unlined cavity are
esgsentially quasi-static and reach their maxirmunm values after 3-% cnvelop-
nent times, i.e. the dynamic amplifications arc small percentoge wiae.
Reoults for waves with decaying pressurc-time histories are easily derived
from the corresponding step pressure results by means of Duhanel integrals.

The velocities and displacemzants of the cavity boundary are used as
input functions for determining accelerntion ond relative displacement
frequency spectra for shock mounted installations in the cavity. The
shock spectra which include the diffraction effects and are consequently
more appropriate, differ considerably from the free field spectra, particularly
in the high frequency ranges. In sddition, it appears that the most
favorable conditions for chock effeets will be encountercd if the equipment
15 shock mounted so that it will react to the average (rigid vbody) motion
of the cavity.

Results for an elastically lined cavity in an elastic mediun cuu Ve
obtained from the corresponding solutions for the unlinecd cavity. The
theoratical method leads to a set of simultaneous linear integral equations
which may be solved numerically. This large effort is currently under
way, and 1t is hoped that the results will be availoble in the near future.

It is felt that the theoretical problems considered here represent
o basic first theoretical development leading to a rational design procedure
for underground structures. A great deal of further theoretical study in-
volving diffraction effects in dissipative end granular (compressible) media
will also be required for locations of practical. importance and interest

in which the elzstic theory will not be applicabla.
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Appendix A

STEADY STATE RESPONSE OF AN ELASTIC HALF-SPACE DUE TO A SURFACE PRESSURE

MOVING WITH SUPERSEISMIC SPEED.

This Appendix ccnsiders the plane strain problem of finding displace-
ments and stresses produced by the uniform motion of & d.iatributc_ad normal
load p(t - %/V) on the surface of sn elestic half-space (Figure A-1).

The speed V of the loading is greater than the propagation velocities
c and cP in the medium. It is assumed that the load has been acting for
a sufficiently long time such that & steady state situation is established.

Figure(A-l)depicta the geometry. The coordinate system x, z is fixed
in space, while X, % is the coordinate system with origin at the front of
the load and moving with the load with constant velocilty V. (If the two
coordinate systems coincide at t = O, then x = Vt = X, z = Z,) The dis-
placements and stresses are obtained by superposition from the solution
for the uniformly moving concentrated line load, Reference [8]. The
results listed hereafter apply for the case where the two Lame constants
are equal, A = u. The horizontal and vertical displacements, u and W,

respectively are
r
1 _ X + rcota . X + zcotf
“'ul.xlp(t —_— )+K2cotBP(t 7 )]
(1)

1 X + zcota x + z2cot
v-;[-chota.P(t-—-v-——)*Kep(t"-‘—v*—'E)]

The stresses are:

O " (cot®s - 1) K;p't - 3‘-—*-%9-931) - 2cotpKp(t - ?‘—"-%,@-@) (2)
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0, = (coteﬁ - l) K2 o(t « ¥ + zcota ) - p(t - X +vzcotgﬂ

v
”y
{2)
2 X + zcota e s X + zcot
Ty = (3 + cotta) K, plt - —_ ) + 2cotpr,p(v - ——\7———5 )
where
w1l V -1V p ]
a-sin-é; p = sin™ < ?--'V3
1 [ cot2p :l
}(‘ - - a.
1 2 cota, + cotacotaap q (3)
&y = 1 cote =
ecoth cota, + cotacoteaa
7/
the function P is the integral of the function p defining the applied load,
y/
Plm) = v [ ‘p(t)at (%)
A .
The shear wave velocity and pressure wave velocity are respectively c and
Cpe The pressure p is positive when acting in the positive z direction,
and G, and Ty & positive 1f tencile,
It is also convenient to have expressions for the strengths of the
plane P-and 8-waves generated by the moving load. The strength of the P-wave
is best defined by the normal stress ¢ at right sngles to the plane of its
vave front. (Sece Figure 1 ) Similarly, the strength of the S8-wave is
defined by the shear stress 7t in the plane of its wave front.
For A\ = y , the values of o and t are:
a(t_x-’-;cota) - Tié p(t_x+vzcota,)
' 3
(5)
X + zeot sina . %+ zcotf >
(v - "—V——'E) = - K;cos2p Bt v )
X, = 1 +2c08°w + sinaztan2p J

3

——
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A p1&t of the quantities o/p and ¢/p is shown in Figure (2). It
is seen thrt, except near V/c, = 1, the ratio l a/plia nearly equal to
unity; | +/p|veries appreciably, its maximum being ebout 0.60.  The
consaquences of the sensitivity of tha solution near V/cP = 1 are dis-

cussed in the body of the report.
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Appendix B

SURFACE WAVES IN AN ELASTIC HALF SPACE

At largs distances from a disturbance, the major effects near the
surface are due to Rayleigh Waves. This has been discovered theoretically
by Rayleigh and is well confirmed by seismological experience. It is
the purpose of the present paper to give suitable expressions for the
determination of Reyleigh effects due to transient normal pressures on
the surface. S8pecifically, closed form solutions are presented for the
effect of a concentrated load, suddenly applied and maintained thercafter.
Any general pressure distribution may then be treated by integration in
epace and time.

The complete effect of a suddenly applied concentrated load has been
tventsd by Pekeris {1, d]*, who also cbtained response ciwrves for certain
displacements requiring lengthy numerical integrations. Ac noted by Pekeris
{2), and long ago found by Sommerfeld (3], the surface effects can be
cbtained by the transform epproach as contributions of certain poles,
ignoring branch integrals which occur in a complete'aolution. This ap=
proach is used hereafter. Introducing the clearly eppropriate simplifi-
cation of considering the depth small versus the radial distance from the
force, relatively simple closed form expressions will be obtained for
stresses and displacements.

By superposition this concentrated force solution can be used to obe
tain approximate solutions for various types of distributed pressure loade
inga on the surface of the half-~space. As an exasaple, expressions ars
given for the displacement vnd atress cozponents caused by a surface pres-
suro (with an intenoity varying in time) uniformly distriduted over a

circular disk of increasing radius.

*) References ure listed at the end of this Appendix.
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Annlysis

The geometry of tbe problem is depictzd in Fig\me(l)whera a cone
centrated force P(poeitive downward, end vaxrying with tim¢ as the step
function) acts on the surface of an elastic half-space. Referance [l]
(Equations (3), (9), (16)-(19)) gives the Hankel-Lsplace transforms of

the potentials from which the transforms of the vertical and radial dis«

placements, u, and L respectively may be derived:

°‘° atle
u(r, t) = —be jd; j J (o) l:(aga + K)o kazipt |
2 ’"‘2511 o
o a-le 2 -kaz+p€][ ak | g
-2t° e -——-J &p
o adiw
uu(ry ) = f-’: at [ 3 (er) [(26% 4 xR)eTHORPY .
0 8eiw — .2
- (21% + BR8P 4 B "’e"“"‘*ﬂ _s_u(g) %P.
where
ha_(_éz)2 ka.(gé)Z c2“_g ’c:.)sgeuu3c2
P
(1a)

ko= (2402 g o (42 T

M(e) = (26% + ¥B)2 - Pe%up

For simpli:city, similar to [l] » the two Lamé constants have been set

equal, A = u. In order to insure decay of the displacements at infinity,

the branch of the square root must be chosen to yield a positiva real part.
The approximate solution for the Rayleigh phase 1s obtained from

Bquations (1) by utilizing only the residues of the integrals at the
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(Reyloigh) poles, p = & %—5 s With 7 = (%)(3 +\/§—)1/2 ( veference [2] )

The contribution from the poles is:

2 - hH/R 2
U = e L. — —l Im l- 27 2y }
WL R (F - (F P (@)

12,2 1/2 [' .
E - 1)‘72[ }

vhere, again, that branch of the square root must be taken which yields

P
U, = o= () Re{(l 2y )(: —-——‘7}4' 2(7 1)

a nositive real part, and vhere

wm E + 44 (72 - l)l/_e_]/r
v~ [ e 1f P -%)Vﬂ/r (2a)

T = 'c’c')/é"'iz.' » i“(’)' - g"%_i 4

«

Since only the Rayleigh phase is being considered, these expressions are
only epplied to sballow depths ( A<< 1) and to values of the time neor the
arrival time of the Rayleigh wave (v = y). Using these restrictions, Equa=
tions (2) may be approximately simpliried to the final form:

a 1(1(72 - l 1/2 Im (1 ~ 272) Z.l/2 % 27 Z'l/ej

1/2 -l/ (3)

L_.Y_i

u, =K, 7 Re [-(1 - 2P M w2 - MR (P
vwhere

(3a)

= x 4
Y BV 6y murl T2
B St -y

2, = '—‘—Z'L v 102 - 1922

2
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From these expressions for the displacexents, expressions for the strass
camponents may be derived by routine differoentiation where £ X,
T a 7 18 used again:

00 By (@ - 1 R |2 - 3]

Opp = Ky (210 - HM2 1 [_;;3/2 - z;”"j ()
40 gy A2 1m0 [57]

opp = K5 (1 - 27) Re [:3272 + %) zi3/2 + (1 - 29 253/5:]

where
(4a)

Kp = Etrse
16 \[6y 1243/
The numerical evaluation of Equations (3), (4) 4o simple. Kot omly
are the expressions in closed form; but each of the responses, for a
glven medium,is solely a function of a single paremeter, the non-Gimen-
sional time 7. Figure(2) shovws as exwzmple the vertical stress Oy

k4

(note—z—""r-—-—-—l—‘—"".’) .

Equations (3) and (4) may be utilized to obtain approximate solutions
for various types of pressure loadings on the surface of the elastic half-
space. Consider es an example the loading depicted in Figure(3} A nor-
mal load of intensity p (varying in time) is distributed uniformly over
a circuler disk of increasing rasdius R.. Assuming further that R << 1,

the solution may be written

R 1/2
u, = Ky ftp('r) d'cf ) Ea('r) . a U, ax (mar,z) (5)
°

-R(%)
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where

ym =

3p
3 86 PRV

u . Yy,
u, = (72 - %)l/a In El - 272) zl3/2 . 272 123_2]

-
.ﬁr = 7 Re [:(l - 272)2i3/2 + 2(72 . %)1/2 (72 - 1)1/2 '2'53/2—]

(5a)
= 1 2 11/2
2y =7 (ot -« cr-7x)+ 4y --3-)/
'z'e.g-l;-(ct-n'-cr-7x)+i(72-l)l/2
and £ Rit)’ 1/2
o = K, jp(‘t) d'rf B(z) - xa___l O & (B n =7, 0, 2) (6)
° -R(~)
where
s - e
T, = (@7 < 1)° Re [2;5/2 il (52)
—i ¢2;

rZ

Top = (3 22 g !_Zf/a:]

G - - 27 (7 - %)1/2 In [2;‘5/2 . -255/2_]

Equations (3) and (k) break down for z = 0, and the integration procedure
{5); (6) can therefore not be used for the surface z = O elther. Tae
determination of responses frcm transient distributed loads for z = O
requires a peparate approach starting from the trensform expressions for

these loads, or equivalent procedures of going to the limit z-—— 0.
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The computations vero made, by necsasity uoing an IBX TOk coeputer.
The ccuplete numerical analysis as well as the detailed cocputer program

vill be presented in detail in a fortheoming paper [4).

Results werc obtained at various depths below three surface pressure
contours for the 20 M.T. surface burst. First, an elastic medium in vhich
¢ = 10,000 ft/sec., v = 1/b was considered. The preosure contours chosen
were at R » 2000 ft. (10,000 psi contour], R = 3200 ft. (2,000 psi contour)

and R = 500 ft. [700 psi contour].

rigs, (10)-(12) shov the attenuation of the peak stresscs 9.t Y00
and O vith depth at the 2000 ft., 3200 ft. and 5000 ft. distances from
Ground Zero for the clastic medium with ¢ = 10,000 ft/sce. and a wolght
of 167 lb/t‘t3. These curves arc useful in determining the depth at each
location belov which Ruyleigh wave cffects arc small and moy be neglected.
The reader is referred to the discussion of the determination of Rayleigh
vave effects in Sec. (3) of the report and to the results presented in .

Fig. (3-10)-(3-13).

The stresses produced by a 20 M.T. surface explosion on e clower
elastic mediun in which ¢ « 6000 ft/oce. but whose weight was the some,
1.0, 167 1b/re3, woro aloo obivained for R = 3200 ft. (2000 psi contour)
at various depths. Mg.(13) show the attenuation of the peak stresses

9%p? %8 and LA with depth at this location.

Some typical stress versus time histories for Rayleigh effects are
shova for o, Ogo &nd 0 at the indicated range and depth in Flas. [(14)-(16)).
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APPEDIX C

DIFFRACTION OF A SHEAR WAVE (S WAVE) BY A
CYLINDRICAL CAVITY IN AN ELASTIC MEDIUM

I INTROCUCTICN

An infinitely long cylindricol cavity in an infinite elastic homogen-
eous and isotropic medium is acted on by a plane shear wave whose front is
parallel to the axis of the cavity. The shock wave propagates through the
mediun with a constent velocity ¢, and carries the shear stresses <U(t)

(sez FigJ1)).

By means of a sultable transformation of coordinates, the problem can
be solved by a procedure which utilizes the results obtained in the solution
of the problem of the diffraction of a P wave by & cylindrical cavity in an
elastic medium. An integral transform technique is used to determine the
stress field produced in the medium by the diffraction of the incoming
shock wave by the cavity. Expressions for the hoop stress %9 the radied
stress %r and the shear otross 0.9 are derivod and numerical results are
oresented for the hoop stress Cap at the cavity boundary., Although the
problem is considered for S waves with a step distribution :lx_) time, the
resuits obtained for this case may be used as influence coefficients to deter-
mine, by means of Duhamel integxols, the stress fleld produced by waves with

time varying pressures.

II  CENERAL PROCEDURE

Coasider an infinite elastic medium which does not contein a cavity.

lne stresses % ? % and %g produced by the incoming shock wave at

points lying on @ cirele of radius "a" {Fig{2)] are given by the expressions
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0..=t8in2d (1)

0omtcos2b (2)

069--1‘91112'5 (3)
The superposition of the tracvions

Opp ® -t ein23d (%)

O.g==tco828 (5)

vhich are equal and opposite to those given by Eq. (1) and (2) on the
surfece ¢ = a, produces & traction free surface which can bo considered
to be the boundary of a covity of radius "a" in the medium. The total
stress fleld produced by the incoming 8 weve 48 obtained by superimposing
the free £ield otresses [Eq. (1)-(3)] and the stresses produced by the
application of vhe surface tractions O, ondo.o {Eq. (4)-(5)) to the
boundary of the cavity.

A tronsformation of the coordinate § can now be made, This transform-
ation brings the applied tractions of Eq. (4)-(S) into coineidence with
those of Eq. (4)-(5) of {20]. Consequently, certain of the formuls and
influence coefficients developed in (20] for the case of an.incoming P wave,
may be used to obtain similar resulte for the case of the 5 wave. Letting,
(rig. (32, LEER (6)

and substituting Eq. (6) in Eq. (4)-(5), the tractions become

Upp @ = T ;1n 2(e » "/lo)- 7 cos 260 (7

8. ® = 7 COB 2{6 - “/!;)- et 8in28 (8) !

2
o
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The boundary tracticas o, . and o o [Eq. (7)-(8)] arc expanded irto a
Fourier Series in 6 [Fig.{3b)]:

- -Zn“(t) cos né (9)
n=l
L -Zt;m(t) sin no (10)
n=
where ﬂ/h + &(t)
1
ans(t) u ;\/;tr(e) cos nd a6 (11)
=/ - &(t)
#/b + a(t)
b (t) = % 9,o(6) 5in 00 a0 (12)
2/ - a(t)
and et
a(t) = coa'l(l - —z—-) (13)

Substituting Eq. (7), (8) into Eq. (11), (12), the expansion coefficients
becone

During envelopment t < %E

spg(t) = [ E0 e (em) &) oy, 2 -
b (t) = - '-;- [sin ‘(:;n) ¢, sin g;n) &] sin E-E (15)
28

After envelopment t > %

8, (t) = b, (t) = 0 nfe (26)

8,,(t) w = by (t) = % (1)




«216-

It should be noted that there is no contribution from a series term for
n = 0, and that since only the series term for n = 2 has & non zero
coefficient after envelopment, only the n = 2 mcde will contribute to the
long time (static) solution for the stress field in the mediun,

The plane strain problem for the streas field around a cavitvy of

radius "a" vhich has the surface tractions Opr and %0 spplied to the
n n

boundary » = &, is now conaidercd. The surface tractions Orp and %0
are given by N
crrn " ans(t) cos nb (18)
°r9n - bna(t) sin né (29)

As in [X], to make the problem more tractable, the tractions 0,. and
n

o.g ere firet applied to tho cavity boundary es step functions in time:
n

¢ w 3U(t) cos nd (20)

Shg = keti{t) ain n@ _(21)

The stress field components produced by the pressure inputs Eq. (20)-(21)
are eveluated in Section III of Reference [20] and are used as influence
coefficients in Duhamel integrals for the determination of the corresponding
components produced by the true boundary tractions of Eq. (18)-(19). For
convenience, the auxiliary problem is solved for the following two sets :

of spplied boundary tractions,

ann » U(t) cos nb ] A
(22) i
Ure =0 _;
n /
r (23)
°r9n « U(t) sin no . ;
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As en illustrat{on of this procedure, consider the hoop streis Cgg at

the cavity boundery. Lat the quantities %e * and %8 * be the time
dependent portions of the hoop stress %0 ntnr = & pro:uccd by the

applied tractions givén by Eq. (22) and (23) respectively. The correspond-

ing stress components due to the boundary tractions of Eq. (18)<(19) are

given by tbe Duhamel integrals:
17

36% - f [im(n) °ee; (t-n)]dn (24)
0
t

?:'GBn N f [ﬁns(n) ceen” (t-n)]dn (25)
]

The total hoop stress %0 produced at the boundary of the cavity by
the incoming 8 wave is given by the superposition of the free field stress,
Eq. {3), and %he stresses from Eq. (24)-(25):

L]
el
usp(t) = - 1 cos 20 *2_/[369 (t) + :99 (t)] cos né (26)
i n n
D=l
The mevhod of superposivion can aiso be used in a similar manner to evaluute

the stress field, Oer * %6 * %o at points in the medium beyond the

toundary of the cavity, i.e., r > a.

AUXILIARY PROBLEM - STRESS FIELD PRODUCED BY THE BOUNDARY TRACTIONS

orrn = U(t) cos nd and °r9n n kU(t) sin n6 [Rig. (L)1,

The straess field produced by the boundary tractions Opp ™= U(t) cos né
n
end O ™ %xU(t) sin n6 bas been determined in [], Section III, and the
n
analytical results are given in detail in that reference. The hoop stress

component, Ogy , CAD be evaluated from an inversion integral of the type
n
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ct -
Seg (r,0,t) L w-iyl it -ﬁ- ;
cgs ne - 2x1 griPBe+ DE] at (27) )
=iy
vhere
2
(8 + k] (282 B D) - ((2a® + 20)% 4 ¢7) Hﬁa)(iﬁ)lxﬂ
r
1(r,8) = ' (28)
2 c ir 2¢c na S bT
2 2
+ 0 - o) fen(een)5 1D @) - 2 i) ()
and
F e fea(asd) - 382 820(0) - 2t 8B (29)
2
C C C C
B = (-2n(n+l) + -5 2] nff)(sl’- ) + 2 -eﬁ ¢ n,(ﬂ(af t) (30)
Cs 8
D= 2a(ai) 2(e) - 20 ¢ w)(p) (31)
2).° c i 2' c
E= 2n(nel) n,(, )(EE £) - 2n e‘% : hf‘,}(g:; t) (32)
T o6

8imilar inversion integrals for —r 29 and = :e are prosented in {20).

The integral of Eq. (27) has been evaluated in Section (IV) of (20] for
the hoop strese %0 at the cavity boundary, r « a. 'The hoop stress %e is
n n

given by the relation

oo
=== [F1+R+1I)cosnd (33)

where R and I are given by Eq. (75) and (71) of (19] respectively.
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IV NUMERICAL RESULTS AND CONCLUSIONS

Numerical results ere presented for the hoop stress at r = &, which
is produced ty an incoming piane shesr (S) wave with & step pressure dis-
tribution in time. As in the case of the P wvave, it was found that the
maximum values of the stress are not materially affected by the early-time
stress contributions which come from the coefficients 599 and 399 N
n larger than 2, ond conscquently, the series in Eq. (26)nm=y be terminated
after the n = 2 term for computational purposes. Moreover, only the
contribution from the n = 2 component combinee with the free field streos
in Eq. (26) to give the asymptotic long-time volue of ggg .

Fig. (9-8) shows the hoop otress o., at the cavity boundary for the

66
locations & = 0° and 8 = U450,

The hoop stress produced by the step shear wave may be used as an
influence function to determine the hoop stress produced by a wave with

varying prossure-tims Listory by means of the Duhamel integral of Eq. (9-1).

{sss ™g. (9u5).)
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DISPLACEMENTS AND VELOCITIES PRODUCED BY THE

DIFFRACTION OF A PRESSUNK WAVE BY A

CYLINDRICAL CAVITY IN AN ELASTIC

MEDIUX
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HOMFRCLATURY

The following nomenclature is used in this paper.

8, r

ur, 9, t)
vér, 8, %)
v(r, 6, t)
o

a,(t), b, (t)

£ f ¢
dn' d:’ hn’ a,
a(t)
(r, o, t)}

f(r: 8, ﬁ)

F, B, D, E
21 4(2)
n o}

) ik

£(s, r), Q(§: r)
In(y): Kn(Y)

kr, ke

— a—

P(t)

u(t)

n

polar coordinates, see Figure (1).
displacement vector of a point in the medium.
radial and tongentiol displacenents of & point
in the medium. (lote that a positive displace-
ment w 18 outward).

radius of cylindrical cavity.

Fourler serien coefficients for expansion of
stresses orr and ora

Propagation velocity of dilntationsl and shear
waves respectively in medium.

Fourier series ccefficients, Sce Equationg(102)ana (103)
Time dependent ccofficients for rigid body motions.

function of r, ¢, ¢t and corresponding transformed
function with respect to time.

functions {Sce Equation (59)-(62))

Honltel fMunctionn af firat and necond kind of
order n.

FPunctions appearing in transformed displacements
and velocities.

modified Bessel functions of the 1irsv and sccond
kind respectively, of order n.

unit vectors in r and ¢ directions respectively.
coefficient.

time

delay time (Equation (8)].

variable pressure-time history of incoming
preseure wave, see Section (VII).

unit step function.




alt)

]

Oprt %0

o
¢$r1 8, t;
¥(r, 6, ¢
]
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angle of cavelopment.
numbor of circumferential waves, integer.

ratio of stress components in incoming wave,
see Fiqure(l).

Lomé constant.
shear poduwlus of medium,

Poisson's Ratlo
1.3

°p

mass dencity of mediun.

radial and shear ctresses respectively at a
point in the medium.

stress intensity of incoming wave.

potential funections of reflected and rodioted
vaves in the medium.

i‘.mnsfom variable.

Additional symbols are defined as they occur in the text. Subscripts and

dots used with displacement and potemtiamli functions indicate differentietion;

€8 urr.’a—g’
or”

) etc.
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INTRODUCTION :

An infinitely long cylindrical cavity in an infinite elastic homogenc-
ous and isotropic medium is acted upon by & plane shock wavae whose front
is parallel to the axis of the cavity., The shock wave propagates through
the madium with a constant velocity cp and envelops the cavity [Fig. (1)].
The direct stress components gU(t) and c¢oU(t) which are raspectivoly parallel
and parpendicular to the direction of wave propagation, are carricd by the

shock wave.

An integrel transform technique 48 used to deternine the displacexments
and velocities produced at various points in the medium by the éiffraction
of the incoming shock wave by the cavity. Expressions for raudial and
tangential components of the displacement and velocity are derived and
numerical results are presented for these quentities at points on the
boundary of the cavity. Although the problem is considercd for pressure
vaves with o step dlatwibution 4n time; the reeults obtained for this case
may be used as influonce coefficients to dutermine,by means of Duhamel
integrals, the displacements and velocities produced by waves with time-

dependent pressures.

GENERAL PROCEDURE

The stress field produced by the diffraction of & plane step shock i

‘

vave by & oylindrical cavity in an slastic medium was eveluated in Ref. [20].
The present paper utilirzes a similar approach in determining the displacements -
end velocities of mass points in the elastic medium. Essentially, the :
e

displecement and velocity components at any point in the medium are obtained by
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superimposing the free-Tield veloeity and displacement components, l.e
those produced by the pressure wave in the medium with no cavity, and

the velosity and displacement components produced by the application of
corrective tractions at the boundary of the cavity in order to make the

boundary surface traction free.

Free-Field Velocities and Displacements.

Coasider an infinite elaatic medium whicli dces not coantain & cavity.
The atrassas g " and 9.6 produced by the incoming shock wave at pointc lying

on & circls of radius "a", [Figure (2a) are given by the expressions

2 2
9= -0 [cos 0 - ¢ 3in' 6] (1)
1+€
9.9 = O [-—-2 ] ain 260 (@

The radial and tangential componenta of the particle velocity of

vointa in t.he medium behind the step wave front are given by the relations

» g
wt = - E-c—' cos 0 (3)
hy
v, =2 gin 6 (k)
f ocp

The displacement Yp cf a point in the medium contains two components
Yp = Vf(r,eit).k_r. + Vf(r)e:t)-k_e’ (5)

vhere, by integrating Eq. (3)-(4), the radial and tangential components

Jf the displacement are given by

. #
vp(7,8,t) = - B%;[cos 87 {t-% ) )
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v(r,0,) = -[atn ] {t-t") N
T

whore the time t is moasured from the arrival of the shock wave at the

point r w a, 6 = 0° [Flg. (3)] and the delay time t" 18 given by

* ae-pcosé
TR @

t

Velocities and Displacements produced by corrective boundary tractions

applied to the surface of the cavity, r = a.

The stresses produced in an infinite elastic medium with no cavity,
at points lying on a circle of radius "a", are given by Eq. {1) - (2).
The superposition of the tractions

Op = O [c0520 - ¢ einao] (9)
Oy = =0 [-1-;—‘] sin 26 (20)

which are equal and opposite tc those given by Eq. (1) and (2) on the
surface r » a, produces a tractionefrec surfuce which con then be considered

to be the boundary of & cavity of radius "a" in the medium. The total dis-

placement and velocity field produced by the incoming pressure wave is

obtained by superlmposing the free field quantities [Eq. (3)-(4), (6)-(T)]
and the velocities and displacements nioduced by the application of the

surface tractions of Eq. (9)+(10) to the beundary of the cavity.
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Proceeding ag in Ref. {1], the boundary tractions o, snd a5

{Eq. (9) = (10)] are expanded into & Fourier Series (Fig. (2v)]:

Opp ™ a°:) +>_’an(t) cos nd (11)
nel
Sg=)0b (t) sin no (12)
where (8
8, (t) = %[urr(e) cos n6 aé (13)
a(t) .
bn(t) - %[ure (6) sin n6 ad (14)

For times which are.leass than one full envelopment, L.s3., ¢ <2 ’

b~}

the angle a(t) is given by the axpression

a(s) = con "L (132 (15)

For t > %5 , the angle a(t) = 7, Substituting Eq. (9) ~ (10} into
P

Eq, (13) = (14), the expansion coefficients become:

During envelopment t s %5

-;2@) “2 [21.1-,‘,-‘-1 + (4%) stn 24] (16)

an(t) - -'—%%ﬂ- [oin na.(conau, - uinea.) + (ﬁ) sin (2-n)a + (.1.;:11) sin m,] an

by(t) = = &5 (1) ['“‘é?;“’“ . m;,(vf;’l)“] (16)
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Aftur envelopment t > 28

<

. e (29)
a(t) =b (t) =0 ny0and2 (20)
elt) = = by(t) = o(325) (21)

For a wave with a plane wave front, the parameter ¢ becomes

cm e (22)

The plane strain problem for the displacement and velocity fieldo

around a cavity of radius "a" which has the surface tractions Op and
n

%9 epplied to the boundary r = &, is now considered. The tractions
n

orrn and °r9n are given by

o = nn(t) cos né

ey
(23)
0.g = bn(t) sin nf
n
20, =a(t) ; o, =0 (24)
rro - reo
To make the problem more tractable, the tractions ¢ or and O Bre first
. n n
applied to the cavity boundsry as step functions in time:
on,n = g U(t) cos no (25)
0.9 =k oU(t) sin nd (26)
n
an,o = g U(t) (=7)

vhere k {s an arbitrary number which is used to i8entify that part of the

solution that comes from the L traction.
n

¥

| SO,

£ ok
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The displacement and velocity coaponents produced by the traction inputs

of Eq. (25) - (27) are cvaluated in Section (III)ané are used as influence
cosfficients in Duhemel {ntegrals for the determination of the corresponding
components produced by the bouncary tractions of Eq. (23) - (2k). For
convanience, the auxiliary problem is solved for the following three sets

of applied boundary tractions

o.. = U(t) cos nd

e
(28)
[} 0
£, - \
(-] =0
rrn
(25)
9 u(t) sin no
n
o, =U(t) ; g, =0 (30)
rr, ’ rGO

To illustrate the procedura, let the quantities "n*' wn" and vo'

represent the r and t dopendent portions of the radial displacement at
any point r,6, produced by tho appliod tractions of Eq. (25) < (27)
repectively. The corresponding displacement componepts due to the

boundary tractions of Eq. (23) - (24) are given by the Duhamel integrals

t.

v (r,t) = fo &, (%) v" (r,t--r)] dr n>1 (31)
. . ) t-

%n(r,t) -‘fo ht’)“ () "n** (r,t-'r)] dr n>1l (32)
. t~

Vst = [ 3[4, (1) vt (r,t-r)] as a0 (33)
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The total radial displecement w(r,0,t) of a point in the medium,
which is behind the incoming shock wave front is obtained by superimposing
the componente given by Eq. (6) and Eq. (31) - (33):

LJ .
®
w(r,0,t) = - E%—[con 6)(t-t ) + 'Go(r,t) +Z[3n(r,t) + 5n(r,t)] cos né (34)
P nel
In a similsar manner, expressions for v(r,8,t), w(x,0,t) and v(»,6,t)
can be obtained by superposition of the free field quantities and those

produced by the application of the corrective boundary tractions to the

surface of the cavity, r = a

v(r,0,t) = a%—[lin 9](1’.-1:*) +§-‘l-'\‘ru(r,t) + 3n(r,t).| sin nd (35)
P o=l -
w(r,6,t) = « == cos 9 + ¥ (r,t) +Z[§ (r,t) + v (r,t)] cos nb (36)
pe, o n n
n=l
v(r,0,t) = B-g— sin 6 +X[$n(r,t) + in(r,t)] sin nb (37)
P D=l

Ear (34) - (37) are given in a form suitebls for those
medium over vhic.h the shock wave hss already pass'ed end wiaich have
already received signals from the reflected and the radiated waves
originating at the cavity boundary. For other situations, the free field
and corrective traction components must be superimposed with appropriate
delay times, re'ui;ing to the arrival of the various waves at the point

under consideration.
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AUXILIARY PROBLEM . Displacoments and Velocities Produced by the Boundary

Tracticos o, = oU(t) cos no and Opg ° koU(t) ain n6 [Figure (4)]).
n n

The equation of motion for the linearly elastic medium is given by:
LT + (N + p) 9yeu = ol (36)
vhere for the plane strain problem, the displacement u contains two components
U= w(r‘,e,t)kr + v(r,a,t)ke (39)
Defining two potential functions, @#(r,8,t) and ¥{r,6,t) such that
w(r,0,t) « g + % 7 (L0)
v(,0,6) = L g - ¥, (42)

and substituting Equations (40) - (41) into Equation (38), the functions ¢

and s satisfy the follovwing wave equations:

o

v’ = ¢ (k2)

2V o ¥ (43)

,/?:_*_‘?E. .’H
e 5 ioe, 5 (k)

are the velocities of propegation of dilatational and shear waves respece

vhere

tively in the infinite clastic medium.

A traneform with respect to time ie applied.
©

#(,0,0) = 5= [r(r,o,t)e"im at (45)
w-iy
£(x,6,t) .f?(r,e,o).*“‘ an (46)

.n-17
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¥riting the transformed potentials § and ¥ &s:
Bz, 8, 0) = 3(x, M)eoond (47)

¥r, ¢, 0) = ¥(r, 0)sinn0 (48)

the transformed wave equations become

2
B tid, + (55 9-2-) (49)
% r
Votiv e - N- o (50)
Cy b
and tho solutions for divergent waves are givon by the oxproa;;ionu
g.(x, 0, 0) = A () (E)comno (52)
P
v (r, 0, 0) = Bnu,(f) (&)s1nn0 (52)
]

The coefficients A 2 and Bn are obtained from the boundary conditions at

the cavity boundary r = a:

"L ou(t )eosnd (53)

creJm = koy{t)oinné (sk)

The stresses "*r and °r9 are first expressed in terms of the potea=

tial functions ¢ and V --

o = o [¢n,-;3§~ Yo+ vl (55)

2 2 1 1 A
99 = u[-!-;¢r9- ;—2-¢9+;vr-vﬂ*;§ Vgel (s6) .
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Tronsforning Tuations (55)-(56) and substituting Equations (51)-(52)
into the transformed equations, the constants An and Bn may be computed,

The transformed potential functions ‘beem(*)

- 2

Lo @@
R SO ES I YR (58
Yn " 2«0 plFB + OE D ‘c, ein n

vhere
F = [2a(a+1)- 3;13"“’(5) 2618 (1) (59)
B - .an(n+1>+-r- ) u(®) (-2 ;>+z-2; ) <-2 8 (60)
D a@+1)ﬂ”u) aat 12) (1) (61)
£ = eafa+2) &% (;,1:- c)-anaf; 1e) (-:f by (&)
and
E - 2
D

The trensformed displacements are obtained by substituting Equations
(57)=(58) into the transformed Equations (40)-{41).

P (g, r)eos nl

T(r, 6 0) = som TETEE (63)
- Q (¢, r) sin no
Vu(r) 6, 0) = 5—— W (64)
vhere
p(t )= (34 aEl-2u®E) + al)E)) . . ul[—,ﬂ,ﬁa)(-l—)l
(65)

(*) The following results are given for the epecific case of A = y, 1.0,
for a value of Poisson's ratio v = 1/k,
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and
a rt
Q) = (e e (- 2PV E) 4 (D xr)- 20 n,‘f)(l—) . -2 )]
(66)

8imilarly, using tho traneform for tho derivative with respect to tice of
the displacement components v and v, the transforms of tho veloocity
coxponents tecome

Pn(l, r) cos n@

V() 6, 1) w B P (67)
- Q. (}, r) oin no
V() 0 ) w P re— (68)

The radiel displacement and velocity components, v n and \'ln, may be

evaluated from the inversion integral, Equation (46), 1.c.

- itc t/u
17 P_ (t. r)e P
\Y (r, 8, t) - -Z_X_i-[; J —-R—?m)—- d§ cos nb (69)

.“-17

and /
- itc t/o
ir P (b rle

\
e _—TF_BTD_E-)_— d§ cos né {70}

-1y

&

vn(r, 6, t) =

[

The corre-p'onding inversion integralo for Vo and \"._‘ may be derived by re-
placing the quantity Pn( ¢, r) cos né with Qn(g, r) sin nf in Equations
{69)~(70) respectively.

The inversion integrals for the volooity components \'«n ond v n at the

boundary of the cavity, r = a, will be evaluated in Section (IV).

-4
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IV. INVERSION OF EQUATIONS FOR THE RADIAL AND TANGENTIAL VELOCITY COMPONENTS,

Vv, AND ¥ AT THF CAVITY BOURDARY,: = @.

The radial veioeity \'ln at r = a 18 evaluated by inverting the integral

c t

1p-2

- 4o 3

v (a,8,t)u Tt 1P (8,8)e
2. L 2 at (72)
gc_ cos n exi IFB + DSI ’
p ~0aly .
where .

¢
p(o,t) « {B + 18] Lnsl®(e) + ) (01 - b - ) [na,(,"”(;i;—)l} (12)

All computations were mede using a value of Polsson's Ratio v = 1/U; this

corresponds physicelly to & granite rock medium. For v = 1/L, the relation

e = [3 c, (73)

P

exists batween the diletational and shear wave velocities and thic will

be introduced into Equation (72) in the following transform inversion.

The singularities of the integrand or Equation {7i) are & braach
point at the origin ¢ = 0, and simple poles defined by the roots of the

equeation FB + DE = O

W3 2 - 1) 0n(®) (T o) + 36pnta v 1) - 3B () 1BFy +
=0

» 168 + e - A W (ERN(F 0 + 165 3+ 45 1 1Py, e

n-l

(74)
Consider the contour ABCDEF shown in Figure ( 5 ) where the arcs AB and
EF are cf infinite radius and the lines BC and DE are branch cuts. By the

residue theorem and Jordan's lemma, the integral of Equation (71) may be
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evalusted as -

F iic t ifc t
P (¢, a)e"*%"/a P (£, 0)e*%/a
1 “n'™ 1 “n\™
f'a‘x —Tm ym)— - f 2%~ (FD * DR) at + 2“?3 (15)
A DE

vhere g R, 46 the oum of the residues of the poles dofined by Equation (%)
of the pertinent branch of the integrand.

The contribution to the velocity component \':n of the integration over
the path CD 345 equal to zero. This value represents the asymptotic value
of ‘;n for very long times,

The contribution of the integretion over the branch cuts BC and DE
leads to a branch integral which must be evaluated pumerically. ILetting

gDE - Wix/e ; Em - ye-13u/2 (76)
and using the recurrence rohtiom,(*)

238 w 23, (0) - 5H(e)

(mn
(e e N O ALY
the branchk integral bacomes:
~ (N, - xN)] - )
- ()t f —N%n_ 2l e (18)

o Y
vhere

12%(n + 1)%2 (P22(y) + 5N+ 1
+ 3%0n?(n + 1 + 2206 + 15 + o NALET ) + A + -
o| ¢ 12BMPR ) ¢ L))+ 3 (P () + (B 4

- 24nP(n + 1)y3in21n_1(y)1n(y) - Kn‘l(y)lg.‘(y)) -

—\

- 123 y3enln + 1) + FPUAL (B (TY) « K (FYIR (301 | (19)

.

(%) "A Treatise on the Theory of Bessel Functions", by G,N. Watscn, Cembridge
Univereity Preas, 1952, Pgs 75
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¢

6aln + 1y%(en(n + 1) + 3PULLl) + ()]
+ 6a(n + l)ya {en(n + 1) + 3}’2}[’\2161(/5?) + lﬁ(ﬁb’)]
(vt (R () + 2, ()

¢ 360y 12 (B )+ R, ()]
- (3% + 2ln + AR, (T, (0) - K, (K ()
- 65 5713 + 2n + 1AL (BT (U5 y) - %y (B K (/5 9))

and vhere D is given by eq. (81), Pg. 2k2,
Equation (78) can Ye oveluated mmerically for values of the time
paranmetor fgt- .

The contributions from the poles 53 vhich are roots of Equation
(74) may be evaluated by the Residue Theorem:

R= 21‘1? RJ
vhere
. 2 2
23 -8 1)@ (55 |
/3 n(ok - 18, 1008 w2) (58 1o

¢
+lenae - 1) + 3638, nf2) (s,) )3 ty) | 1o =

- 3b+ 08 8P E )

125 83 0) (e ul®) (5 &) 1
2038330 - 2) + bla - w2 0P RPN )
s3t5tn - 36) 58 (e P ¢,)

3 (86302 - 1) + 3630 - 368301 e ) (73 )

(80)

(62)

S L Y
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The veloeity ccmponent ‘.'n then beeomes:

\':np
'é'c; o {I+R] cosnd (83)

In & similar manner, the tengential velocity \'rn at r =, 18 ovaluated

by inverting the integrol ct

{bdm
' 2
Vn(ai 0, t)u 1 ry ?-Qn(ay te 8
Uc_ 8in nd * 2xi /\
p ---17

d 8l
r—— ¢ (84)

vhere

yle, 8 = {15 + 1100 + 10 - snCmnfEEe) + 2 e o1jes)

Again, using the relation v = L/h, i.e., c, = 3 ¢gs the singularities
of the integrand of Equation (84) arc a branch point at the origin & =0,
end eimple poles defined by the roots of the equation FB + DE = O,

Equation (7&). The integral is inverted over the contour shown in Fip-
ure { ). Proceeding &o in the inversion for \'ln, {he tangential velocity

component \'rn(a., 6, t) can be cvaluated from the relation

v (5 9, t)
;;——i-[1+m8mne (86)
P
The branch integral I is given by .
c ty
(i, - k) -{}-—
I=(1) f dy (87)

vhere

<6n(n + 1)y®[2n(n + 1) + 3y2][ﬂ21§(y) + lé(‘y)l -
-6a(n + 1hlen(n + 1) + HPUAVT y) + BUF ) - 120 (FL () + € 1))
Bye | -3 PR (B )+ € ()]

+ énylatn + 12 + HPIPT_ (T (y) - K, (9K ()]

v 65 mlatn + 0 + 3PURr (FVILIEY) - KBSy E )

l
{88)
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-%*ln%(n + 1)% + 12n(n + 1)y% + %hl[rpli(y) + Ki(y)l
Bn + 122 (LB ) + BBy

2R (y) + (1)

A 36 PR (T y) + (/5 9]

123200 + 1) «PI0PT (DI () - K, (9K ()]

[*2’#3 n2n + 1y30PL (3 ) 1,03 y) - K (B (/53] ]

W -

(89)

end D 1s given by Equation (81). E‘qu.u.tion (87) may be evaluated numerically

for values of the time parameter —2— .

The contributions from the poles & 3 which are roots of Equation (74)

may be evaluated by the Residue theorem:
R =20 R
PR
where

(23 (n+ 006 12) (6273 1)) |

Y3 [2a(n - k) + 3:«&215. :t("’)(e )3

a3 ) o

{
ven(n - k)t nff{ (e) a,‘f)wg t,)

i e 1 5 )

(- 1203 5 “(21(53) x‘”(/"gd) \
B a[3a3(3n - 2) + bn(2 - a)e ] n(a)(e )u‘z)(l‘g ) k

2R3P, =

e
+ 38 (i - 3¢0) 1®) (ed)rl,(,a)(l'ga)
[ +/3 18620 - 1) + 3650n - 3630 w28y KEL T ¢y))
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DISPLACEMENTS AND VELOCITIES PRODUCED BY THE BOUNDARY TRACTTONS Oup © u(t)
o)

AND Gre - 0 .
o)

The disvlacement u for the case n = O has a radial component only
uw wo(r,t) .}:E (91a)
The coefficient wo(r,t) is expressed in terms of a single potential function

#(r,t):

wy(rs%) = ,(r,%) (910)

Proceeding as in Section(IV), the radial displacement w_ and the radial

velocity Qo can be obtained from an inversion of the followinyg integrals:

ct
(2) e
=iy 2),,r
~ B (g-') e d§,
a 1 8 * R
wo(r,t) . §%T; (2) (2) (92)
_;[1, gl-2H "' (8) + zaﬂo (¢)]
c
D
and ' vo w1y H&e)(%) ei€ a at
v (r,t) = =2 (93)

e (s) - 2 (5))

-o‘o.iy
The quantities LA and ﬁo at the cavity boundary are evaluated by integrating
Eq. (92) - (93) with r = a over the contour ABCDEF, Figurc(5). Proceeding
as in Section(IV), the velocity &o is computed from the relation

"'o(u;t)l-l

[o]
%p

= (I +R) {(9%)

wnare the branch integrel I and tue oum of the reoiducs R arc given below:




208

cnt
o iy
1= | o b 5 (95)
W (2K, () + 3yKy(¥)]° + 2[RI, (y) - 3yI,(¥))

i{J 322

(2) ™y
2 .- [ 1H) _(;J)e ]
yy - 1) - 1 (s,

(96)

The summation over § in Eq. (96) ie carried out for all values of §J

which lie * the first and fourth quadrants and are roots of the equation

3820 (a) - 2n®)(g) = 0. (97)
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vi. DETERMINATION OF THE RIGID BODY MOTION GF THE CAVITY BOUNDARY [Fig. 6].

A portion of the total mc%tion of the boundary of the cavity consisis
of a rigid body translation in which the cavity maintains its shape and
translates in the direction of propagation of the incoming wave. This
rigid body motion can be extracted from the total motion of points on
the cavity boundary. Essentially, one must superimpose a portion of both
the n = ) component of a Fourier expansion of the free field motion and
the n = 1 component of the motion produced by the corrective boundery
tractions, g « al(t) cos 8, o

o = by(t) otn 0 (Eq.(23)).

Consider, for example, the determination of the velocity components,
v and w'/, for the rigid body translation of the cavity. The free field
velocity components, Qf and Gf, Eq. (3)=(4) respectively, which are
produced at points on the cavity boundary, r = a, by the incoming plane

step shock wave are expanded into a Fourier series in 6:

f ®
a
Gf(a,e,t) = °ét) +Zd§(t) cos nf (98)
n=1
ig(,6,8) =Zn§(t) sin n6 (59)
n=1
where a.(t)
dﬁ(c) - %ﬁf(a,e) cos nd a9 (100)
a(t)
n(t) = 2 [ ¥4(2,0) sin 10 (201)

wad v, and 171. are given by Eq. (3}-(4%).
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The velocity compouents Qf and Vr , correspending ton = 1, can
1 1
he written in the following manner:

T O REH O ral(s) - ni(t)
vo = l_——-——é—-——- cos 6 + l- 5 cos 6 (102)
l o
al(e) + My(8)]  raj(e) - nf(t)'l
vf1- ~— _ai“°'[__2 —rsne (103)
l‘di + hi‘
The ccefficlent, L2 represents = deformational component of the
,di . hr
velocities while the coefficient [—-2-— represents the rigid body
veleceity components. For the step shock wave under consideration
¢ 1 26
, -—65;[0.+sina.couu.] t <
dl(t) - (10k)
-9 v > 28
L pc [
gz [o.-oinq.cona] cii—a
i (4) (105)
9 £ > gﬁ
| c
{
In & similar manner, the velocities, ':’c and v_ , (*) produced by

1 “
the corrective boundary tractions o = al(t) cos ¢ and 6, = bl(t) gin 0

can be wvritten in the form:

(#) The quentities Crc (6,t) ana ﬁc (6,t) can ve evaluated from the formulas
1 1

in Section (IV).
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a%(t) + n® aS(e) -
ﬁcl (6,t) = di(t) cos 8 = [-éf-z—;——éffz] cos 0 + [-éffz-ﬁ—ﬁéffz] cos 8 (106)

] c ¢ c
. a, (t) + by () d7(t) - no(s)
v. (8,t) = h(t) sin € = [ X . 3 ] sin 0 - [-!L-——E——l—-] sin 6 (207)
cl 1 2
aj(e) - bi(t)
where the terms containing the quantities [ ] are the rigid
body components of the velocitics.
The total rigid body velocity of points on the cavity boundery is
obtained by superposition of the rigid body couponents in Eq. (102}-(103)
and Eq. (106)-(107):
w(6,t) = a(t) cos 8 (208)
v(6,t) » - a(t) ein 6 (109)
where
b e £ c
as(t) + da;(t) - b (t) - by(t)
a(t) = [ 1 L. L ] (117

In a similar manner, results for the rigid body displacements and
accelerations can also be determined. The corresponding free field
expansion coefficients, d{ and hi for the displacements and accelerations

are given below:
Displacement coefficients

v{(t) - d{(t) coe 6 ; v{(t) - - hi(t) sin 6
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shere

Q
o

sin3 u.]

( 1
i [a.coaa.-uina.- 3
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e
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-1

¢
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—
ol
L
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©
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Acceleration coefficients:
#(e) @ af(t) cos 8 5 W(t) = BI(E) oin 6
1 1 ’ 1 )

vhere

o
8

=N

cot a cos @

o]
0

Al

sin o

Bl

h{(t) -
(V]

di(t.) -{.
{

(12)

(113)

(114)
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NUMERICAL RESULTS AND CONCLUSIOKS.

Nuzmorical results ere presented for the displacement ond velocity
components at various points on the cavity boundery r = a; these quenti-
ties are produced by e plane step shock wave.

As in the case of the stress (19], it was found that the moximum
values of the displacement ond velocity are not materielly affected by
the esrly-time contridutions which come from the terms for which n is larger
than 2, and consequently, the series in Equations (34)-(37) may generally
be terminated after the n » 2term for computaviosnal purposes.

Flgures [(9-13)-(9-14)] show the displacemert and velocity ccmponents,
v and v for the locationso 8 w o° and 6 = 90o on the bound ry of the cavity.
Figurco [(7)-(8)) of the Appendix ohow the radisl and tangential velocity
components ¥ and v at the locations 6 = 00, 22.5%, us°, 67.50, 90°, 135°
ond 180% on the cavity boundary.

The rigid body motions of the cavity under a step wave louding are
computed from Section (VI) and the components from the Iree field und corrces
tive tru'c\tion (n = 1) effects are shown in Figures [(9)-(10)] respectively.
The total rigid body displacements, velocities and accelerations are shown
in ¥igure (Y-13) of Section {y}.

The motions of points in the media which are produced by the step shock
wave may be used as influence coefficients to determine the correspondiag
motions produced by a wave with a varylng pressure-time history, For &x-
ample, denoting the radial component of the velocity produced at the bounde
ary by a step vave as \?8(9, t), vhe rudial velocity due to a wave with

the pressure-time history P(t) is easily computed from the Duhemel integral

t
W= Po"i’(a, 1) +f i’(ﬁéﬁ 1’;.(1'. - 1)dz
[}

by numericel integration {Bee Pigure (9-5)].
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Cp W=o0
/— vVa -d(t)sin%w

\
/—\— = d(t)cosw

v d(t)

w

SN
] W= .0

va -dit)sin¥
\SHOCK FRONT
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F1G6.6 RIGID BODY MOTION OF CAVITY

NOTE ! THE QUANTITY d(t) IS INHERENTLY NEGATIVE,
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APPENDIX E

DETERMINATION OF S8HOCK SPECTRA FOR INSTALLATIONS 1IN CYLINDRICAL CAVITIES

IN ELASTIC MEDIA.
I. Introduction.

The motion of points on the boundary of a cavity subjected to shock
waves, impart accelerations to installations which are located within the
tunnel and are attached to these points. In many cases, these inatallae
tions will be quite chock sensitive and comsequently, they may require
special mountings to absorb the shock effacte produced by the pressure waves.

In order to optimalize the design of shock mounted equipment, shock
spectra are frequently utilized. Two typcs of spectra are particulorly
useful in the present problem: 1) Spechra for the peak relatvive displace-
ment of the instellation in the cavity, with respect to the motion of the
points on the cavity boundsry to which it is attached; 2) Spectra for
the peak absolute aceceleration which is imparted to the shoek mounted in-
stallation in the cavity. The laotter ~pocetra give dote vhich is required
for the mstual design of the installation to be shock mounted, namely the
peak accelerations to which it will be subjected; the former spectra give
clearance requiroments for the mounting of the installation within the
cavisy,

Tue sheoretical formulation of the problem of the determination of
shock spectra of the type descrided will be presented in this Appendix for

waves which carry decaying pressure.time histories as given by Brode (351:

Gy By
P(t) = B (1 - 5:‘: ) [Ke By + Be Dp| + 27 (0/2n%) (1)
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The quantity Po i8 tae peak overpressure in the shock wave, and the
constants D, X, o, B and P are defined in {35]s The displacements of
points on the cavity boundary for waves with the decaying pressure-time
history nwe obtained fyom the corresponding displacements due to vaves
with atep pressures by Duhamel integrals {Seetion (9)). The spectra
eurves for typieal cnses ara shown in Soction (10) of the main raport.
It is of interest to note thut haretofore, shock spoetra which were
used in the design of underground installations were computed from free
field input precoures, and the effects of tho Aiffraction of the shock
wave by the cavity were neglected. The spectra developed in this Appendix
include the diffraction effects; consequently they are more appropriste
and should supersede the free rield spectra. It will, be noted that for
shock mounted equipment with high frequency componeats, the free field
spectra are quite erroneous and the more accurate spectra presented in
Section (10) should be used.
II. General Procedure.

Consider an iInstsllation which 1g ghook mounted to the walls of n
cylindrical cavity in an elastic medium. The problem can be idealized
by considering a linear oscillator consisting of a concentrated maoss M
on a linear spring of constent K. The oscillator is attached to a support
which is subjected to a motion equal in umagnitude to the displacement of
the point or points on the cavity boundary at which the mass 1s attached
{Fizure (1)]. Let the displacement of the support and of the mass, both
relative to a fixed datum, be U(t) and ¥(t) respectively; the relative

motion of the mess M with respect to the support is ¥(t) - U(t). The
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equation of motion of the oscillator is:

Mi+K([Y-T] = 0 (2)
Defining the frequency w of the oacillator,

o = [§ | (3)

Equation (1) is written as
¥+ oY = o0 (%)

For initial rest conditions, i.e. ¥(0) = O and ¥(0) = 0, the solution

of Equation (4) is given by the integral.

t
t(t) = [aﬁ(t) sinolt - 7)dt (5)

o
Shock spectra showing the pesk absolute acceleration and the peak relative

displacement (relative to the moving support) as a function of the frequency

w of the oscillator are required. For a given value of w, the pesk

acceleration of the mass

Er I (6)

and the peak relative displacement

lr-ﬁlmmum (1

ere evalvated.

Tor this study, Brade pressure curves produced at different lccations
by a hypothetical 20 M.T. surface burst werc considered, and the result-
ing displacements, U(t) at various points, 0 = 6,, on the cavity boundary
were determined. These were introduced as forcing functions into the right
hend side of Equation (4), end for various values of w, the acceleration
and displacement responses, given by Equation (6) and (7) were computed

and plotted as a function of w. These shock spectra are presented in
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Figure (102 )-(20-5 ).
The computations were made using an IBM 704 computer. The analytical

formulatjon of the problem in detail 18 given in Section IIY of this

Appendix,

IIT. Analytical Formulation of the Problem.

The determination of acceleravion and displacement shock spectra may
be formulated analytically in two steps. First, the displacement U(t)
producod et a polat 6 = 91 on the cavity boundary by a shock wave with a
Brode pressure decay must be evaluated. Bocondly, tho values of U{t)
are substituted as input functions into the right hand side of Equation
(h) ; the cquation is then integrated and tho oxpressionoe for the moxi-
mun acceleration, Equation (6), and relative displacement, Equation (7)
are evaluated for each value of w. The analytical formulation of the
problem follows:

a) BEvaluation of U(t), produced at a point, 6 = 6,, of the boundary
of the cavity by a shock wave with a Brode pressurc decay.

Exprassions for the displecement, U(t) produced at a point, 0 = 0,,
on the cavity boundary by o step shock wave (P wave) are given in Appendix
D.(‘*). The corresponding displacement curve, U(t), produced by e wave
carrying a pressure with a Brode decay, may be evnluated by menuns of the
Duhamel integral

1
Bt) « / p(r) U = ax (8)

[+]

See Appendix (D), Eq. (34)=(35).

pod et

-

o ed

o
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where P{z) 1s givan by Fgustion (1). To perform this intcgration, ninth
order polynomisl curves are fitted to the function U(t). Due to the
nature of the U(t) curve, a single polynomial fit is only valid over a
certain region of the eurve, and hence geverol polyneminlds arc used, cach

being valid in a certain regicn. Using the notation below, the displacement

& @ i U )
n=0
where .
T = EE— {10)

is valid in the rcgion R vhich is bounded by ry and Ti4?

(

r,)
Reglon R: ry ¢ Ty, 5 U (). (1)
20,12, .44 4
(r)
Substituting Equation (9) into Equation (8), the displacement U ~ (T)
vhich is valid in the region R, ry < T< Ti4y? is obtained by integra-
tion. This quantity is written in the form

Ax,)
g 4

r,)

A
gt (z) + 71 (M., (22)

_I:‘(B’ 1'1)

{7} +
-(A) ri
The expression U {T) 48 given by the expression

A, - A,
'ﬁ( ry) (T) = gi u( x'i)(rr) (13)

n=0

where
i
ULV {Z [‘5:, o ar(:3))%(‘/4, Y] + ax(‘ri)FéA)(T)}
=i :
A)
b

m_n
(r) - { (17 (- alu - o) VﬁA)(ra) + -&4 ] RECEE N

. vl
Fm - (1% - ol - DA + 2

(1)
(15)

(16)
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» I
(a) . L Z o n! w-n

Va (1) = (-1) = ™ o (17)
r=n }
.

and the constants A, o, ond § are given in terms of the paramaters of the

Brode curves (Ses Equation (1)1, .
- - ¢ D -

- SPRIPI: S & 0
PP PP ~&

The expression for 7 ri)(T) 15 obtained by substituting B for A

and B for « in Equation (13)-(18), where

paln ;8 B (19)

Py PP

The tern ‘Z(”i)('r) represents the displacement duc to the atmospheric
pressure term in Equation (1) and 1s given by the relation

- (r,)

27 (1) = g 2 f g, = T (20)

n=0

b) Integration of Equation (L) and tho evaluation of the maximm accelora-
tion (Equation (6)] and the maximm relative displacement [Equation (7)].

Once the displacement U(T) 15 evaluated, the displacement Y(™) ic ob- .
tained by intsgrating Zgucticn (U) for e perticulay velus of the frequency B
@. In terms of the non-dimensional varisble T, Equation (l) becomes -

9-2% + Y = B0 (21) -

ar
vhere -“

5 . W3

B = 3 (22)

The computcd values of ¥(T) are then used to determine the moximum eccel.era-

bt et

tion, Xquation (6) and tho moximm relative dicplacement, Equation (7).

g
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Generally, Equation (21) can essily be integrated nmumerieally by a
fowurd‘atep integration in time. Letting "k" be the interval of the non-
dimenaioxml time steps, and using the Houmcrov pmcedure'{*) for second
order differential equations, a recurrence formula for Y(T + k) is obtained:

22 22
YT + k) w B0 [G(T - k) + 200(7) + O(p + k)] + (B=20K D yym) . y(rx
1;;;%5 ( )+ () + u( )*m‘"() (7-x)

(23)
Equation (23) allows the determination of the displacement Y(T-+ k) in
terms of the previously computed values of Y at the two previous time
ateps, T and T - k. When the integration is started from the initial time,
T = 0, the starting fornmla

¥(0) = © (24)
k) = ——ga—k%a (k) + 56(0)) (25)
12+k"®

mst be used. .
*
Stability considerations ) for the numerical solution of Equation (21)
by the Foumerov recurrence formila, Equaticn {23), roguires thet the time

step k satisfy the condition
x < 222 (26)
®

A further requirement for accuracy of the solution results in the use of a
substantially reduced value of "k" from that of Equation (26). In the
numerical computations reported in Section (10), a value of k = 9-’71_22 a8

o
used in each case.

() See, IMumerical Methods in Engineering, by M. G. Salvadori and M. L.

Barcn, Prentice-Hall, Second Printing, 1955, Page 118 ff.
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For high frequency oscillators in which the value of @ 45 large, it
becomes impractical to ugse o aumericsl procedure because of the small
volues of the apacing "k" that are roquired. Conoequently, for use with
high frequency oseaillators, an analytical expressicn for Y(T), valid in
the rangs, 0 < T < 2, has been developed from the integral in Equation (5).

Consider the displacement U(T) in the roglon v, = 0, corresponding

%o the bounds 0 < T < 2. TFrom the Equaticn (12),

T - T ) + T ) + 2m) (21)

Substituting Equation (27) into Equation (5) and performing the integration, the
displacemsnt 'z(°)('r) valid in the region 0 < T < 2, is obtained:

Y(O)(T) - Y(A’ °)(T) " Y(B’ 0)(T) - Y(Z, 0)(’1‘) (28)
vhere
& Oy . i; ¥& ) (29)
nil

o®: O . i ¥ O)n) (30)

n=l 9
Wl Omy o w7g ) 1@ m (31)

n=0
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The function Yﬁ“’ o)('1') is given by

© one de E
O+ o e o ) (et £ ["‘1?22““2 B

o~ ki
Jn o tk-.)*a}
K cven
Moo okl
+ (1) ® Z(-lff & J +
keJt2

o . 0 oe ok kodd}__ ) k-1
« Y s 0y [-(-1) k@ ) ey @

! X!

Jmn k=43 l knJ+3
k even k odd

\J odd j {J evcn}
e T ol @ W ]

o kit ket
{k,n evcn] {k,n odd}
(32)

Ths expressicn for Y,(_‘B’ 0)(‘1‘) is obtoined by substituting B for A
3
and B for a in Equation (32). The coofficicnts B and B in termo of the
Brode parameters are given by Equations (19)-(20).

The expression for Yt(‘z’ o)(T) is given by the following expressions:

(2 0] 2300 3O 3 @k, B, 5 g
W@ O - 2| ) Gy G
@ (kant2 ken+2
1k,n c.-ven} {k,n odd}
(33)

In 2erforming the computations for determining the shock spectra for
acceleration and relative dioplacement shown in Section (10) of the main
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report, it was found advestageous to use the analyticel expression for
¥(T) (Equation (3 )} to detormine Y(?) in tho rungo O £ 7 <2, ovon
for the intormodiate vange of the froquency @. The recurrence formuls,
Fauation (23), was then used to prolong the solution mumerically beyond
the range T = 2. In such cases, the numerical integration wvas startcd
with the formulas

Y(2) = Yai Y2 -X) = Y2-k (3%)

vhere Y, und ¥, , were computed from Equation (28).

The dicplacements U(T) and Y(T) were compated using an IBM TO4
computer. Once these displacements are known, %he acceleration and
relative displacomont timo histories con be determinsd from Equations (6)
and (7) respectively. In cach cage, the maximm value of the quantity is
evaluated. This procedure 16 repeated over the entire range of the
oscillator frequency w. The curves of maximum acceleration and maximum
relative displacement versus the frequency o are the required shock

spectra.

IV. Determination of the "Free Field" Shock Spectra for Comparison Purposes.

The shock spectra developed in Parts (I-IIX) of Appendix (E) include
the effects due to the diffraction of the shock wave by the cavity. It
is of interest to compare these spectra with the "free field" shock spectra
vhich heretofore have been used in the design of underground instellaticns.
These "free field" spectra are computed.from the effects of the free field
input pressures cnly; all diffraction effects due to the cylindrical cavity

are neglected, Hence, essentially the "free field" 4pecira are developed

A bwemnd

o -l et

1 -1

—

.
[—

-

pioord  beed ] bl bl

bt wesd [l
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from the pressuras that a gage placcd ot a point in the mediwm with no
tunncl, would read. Analytical expressicas for the determiration of the
';h'eo £101d" acceloration and .selntive dioplacoment opectrn arc developed
in this Section.

Let U(t) be the displacement of & point in the medium produced by
a plane step shock wave with a constant pressure P and a velocity of
propagation cpt The displacement U(t) is measurod in the direction of
propagation of the step wave.

The pavticle velocity at the point, preduced by the astep wave

begomes

Ue) = =2 : (35)
P

The displacement curve Tiv) javidved U7 & wave vasrying o pressure
with o Brode decsy, (Eguation (1)) may be evaluated by meens of the
Duhamel integral of Equation (8). Substituting Equations (35) and Equa-
tion (1) into Equation (8) and integratine the displac.ment U(T) 1s

obtained:

-G(T) - ::2;— [ (w - La)(r - e’d‘!") + e~ T ] +

» B [ (n-21/p) - ePT) + pefT ] (36)

where the non~dimensional time T is given by

T-_?Lto

a

Ths coefficients A, B, &, B and p are given by Equations (18)-(29).
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The displacemsnt of the oscillater, Y(T) 1a obtained by substituting
Equation (36) into Equation (5) and integrating:

. =2 - - -2
Aa 1 v w'e o) - w
YT) = = | (p - SVL ~ coan? - - - singlT + cosall’) +
pcia a A+ o +ae ? + mz

-off -2 2 .2
+ S Gor + 22 1+ G- Jotnid - —2% . conar |+
&+ *5,2 (o + &) (P + &)

+

-2 .8t - -2
B 1 - e T . & -
In~5 ML - cosal - - 8ingT + cosat) +
* pcﬁa B P +m prrE 2,
b

-pT 2 -2 ~2
4’;—?0 (52‘1‘*1%—2 ]+'63[L2———-§-' 2. ]sinBl‘-T—-_zez—am cos ot
B+ B°+ 5 (8° +3°) (8° + &)

(31)

vhaore o --‘;2 .

Using the valves of U(T, and ¥{T), the acceleration and relative dis-
placement time histories can be determined from Equations (6) and (7) res-
pectively. Frequency spectra for the acceleration and the relative displace-
ment of the oscillator mass may then be constructed following the procedure

in Section (III} of this Appondix.

Y. Numeric.d Results.

Accsleration and relative diespiacement ohock spectss have been obteined
for cavities which are subjected to P waves with Brode pressur~ decays, from
a 20 MT surface burst. Specira for the rigid body motion (average motion)
of the cavity are presented in Secticn (10) for waves with P, " §500 psi
[Figure (10-2)) and P = 2000 psi (Figure (10-3)]. In eddition, epectra

based on the motion of the cavity boundary at the points 6 = ¢® and 9 = 180°
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are preseated in Figure (30-4) and (10-5) reapectively, for P = 6560 pei.
For comparison purposes, the "frue field" wcceleration spectrum is

nlso given in cach case. 5he reader is referred to Bection (10) for & dis-

cuscion oi tvhe results and a commarison of the spectra developed in the

Appendix(¥hich nolude diffracticn affects)with the fres field spectra.
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Aprendix F

ELASTIC PROTERTIES OF GRANITES UNDER STATIC LOADING(*)

1. FROCEIURE.

Compression tests were performed on two different domestic granites
of structural and architectural quality to determine typicl stress-strain
diagrams end clastic constants for these materials.

Specimene having the shape of parallelepipeds of agproximately thiee
inches height and ose square inch cross-sectional srea were cut using a
diamond rock eav. Electrical resistance strain gages, [SR-b AX-5],
vhich measure both longitudinal and transverse strains were affixed tc
the specimens. The specimens were loaded statically cn a Bald~.l. ‘niversal:
testing machine,

Table (1) presents the dascripticn, composition and elastic proper-
ties of the materials used as listed by the U. 8, Bureau of Bta.ndarda.(**)
Tahle (2) shows the 4imensions, conditions of loading and test results for
the specimens tested. Figure (1)-(3) show the strescs-atrain diegrams

which were obtained from the tests.

IXI. Discussion of Test Results.

It appears from Tables 1 and 2 that The tested specimens failed at

lover loads than expected, However, the Bureau of Standards does not list

(#) The tests ware performed by Dr. Robert Heller, Assistant Professor Of
Civil Enginecring, Columbia Univerasity.

(**) 8ee, D. W, Kassler, H. Insiey, #. H. Sligh, "National Burcou of
Standsds”, Paper No. R. P. 1320, J. of Research, V. 25, 1940, Pugo 161.200.
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more than ons of two test results for each materisl and conscquently a
statistical distribution of properties for a particular typc of granite
cannot be deduced from ths tabulation. Tho test results for each material
are remarkably well duplicated since the specimens wore oll cut Lrom one
large block and consequently have nearly uniform properties. 'I'né‘ ordinary
grey granite has & higher compressive strength, but somewhat lower average
modulus of elasticity than the pink ona. Grain structure, in evidence 4n
the grey granite, hed no apparent effact though on one specimen the load
was applied perpendiculsar and on two others parallel to the grein., fThe
pink granite which does not exhibit any particular grein structure hed o
high elastic modulus because of o greater quartz content.

A1l gpecimens falled in trausverse tension foraming columnor fibers.
Tne shape of the atress.strain disgrams is similar to those obtained by
other investiga‘com.(*)

Poleson's ratio and a shear modulus may be computed, and Poisson's
ratio is found to be variable for all specimens. A typical curve of
Poiason's ratio is shown in Figure (1). Some dnta indicating the loading
rate sensitivity for these materials is presented by wucrker.(*) The
icading rate in the present 3533 was held to approximately 5000 1b/min.
For higher rates of loading, the modulus of elasticity increases cone
gidersbly, but no apprecisbls increase in compressive strength is shown.
Hydrostatic pressure combined with axial loading lias alfs teen used by
some investigetors vhere work could be surveyed in the future to determine
the necessity end feesibility of future tests.

{*) 8oee, R. G, Wuerker, Petroleum Branch, AIME, Doq. 1956 (D552W95).
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